| import math |
| import torch |
| from . import _functional as F |
| from .optimizer import Optimizer |
| |
| |
| class ASGD(Optimizer): |
| """Implements Averaged Stochastic Gradient Descent. |
| |
| It has been proposed in `Acceleration of stochastic approximation by |
| averaging`_. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| lambd (float, optional): decay term (default: 1e-4) |
| alpha (float, optional): power for eta update (default: 0.75) |
| t0 (float, optional): point at which to start averaging (default: 1e6) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| |
| .. _Acceleration of stochastic approximation by averaging: |
| https://dl.acm.org/citation.cfm?id=131098 |
| """ |
| |
| def __init__(self, params, lr=1e-2, lambd=1e-4, alpha=0.75, t0=1e6, weight_decay=0): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| |
| defaults = dict(lr=lr, lambd=lambd, alpha=alpha, t0=t0, |
| weight_decay=weight_decay) |
| super(ASGD, self).__init__(params, defaults) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| mus = [] |
| axs = [] |
| etas = [] |
| state_steps = [] |
| |
| for p in group['params']: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| if p.grad.is_sparse: |
| raise RuntimeError('ASGD does not support sparse gradients') |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| # State initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| state['eta'] = group['lr'] |
| state['mu'] = 1 |
| state['ax'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| |
| mus.append(state['mu']) |
| axs.append(state['ax']) |
| etas.append(state['eta']) |
| |
| state['step'] += 1 |
| state_steps.append(state['step']) |
| |
| F.asgd(params_with_grad, |
| grads, |
| axs, |
| mus, |
| etas, |
| weight_decay=group['weight_decay'], |
| lambd=group['lambd']) |
| |
| # update eta and mu |
| for p, mu, eta in zip(params_with_grad, mus, etas): |
| state = self.state[p] |
| state['eta'] = (group['lr'] / |
| math.pow((1 + group['lambd'] * group['lr'] * state['step']), group['alpha'])) |
| state['mu'] = 1 / max(1, state['step'] - group['t0']) |
| |
| return loss |