blob: 3e01b700ebff7b1c28c93647249dbb469e463b52 [file] [log] [blame]
import unittest
import torch
import torch.cuda.nccl as nccl
import torch.cuda
from common import TestCase, run_tests
nGPUs = torch.cuda.device_count()
if nGPUs == 0:
print('CUDA not available, skipping tests')
TestCase = object # noqa: F811
class TestNCCL(TestCase):
@unittest.skipIf(nGPUs < 2, "only one GPU detected")
def test_broadcast(self):
expected = torch.FloatTensor(128).uniform_()
tensors = [expected.cuda()]
for device in range(1, torch.cuda.device_count()):
with torch.cuda.device(device):
tensors.append(torch.cuda.FloatTensor(128))
nccl.broadcast(tensors)
for i in range(torch.cuda.device_count()):
self.assertEqual(tensors[i], expected)
@unittest.skipIf(nGPUs < 2, "only one GPU detected")
def test_reduce(self):
tensors = [torch.FloatTensor(128).uniform_() for i in range(nGPUs)]
expected = torch.FloatTensor(128).zero_()
for t in tensors:
expected.add_(t)
tensors = [tensors[i].cuda(i) for i in range(nGPUs)]
nccl.reduce(tensors)
self.assertEqual(tensors[0], expected)
@unittest.skipIf(nGPUs < 2, "only one GPU detected")
def test_all_reduce(self):
tensors = [torch.FloatTensor(128).uniform_() for i in range(nGPUs)]
expected = torch.FloatTensor(128).zero_()
for t in tensors:
expected.add_(t)
tensors = [tensors[i].cuda(i) for i in range(nGPUs)]
nccl.all_reduce(tensors)
for tensor in tensors:
self.assertEqual(tensor, expected)
@unittest.skipIf(nGPUs < 2, "only one GPU detected")
def test_all_gather(self):
inputs = [torch.FloatTensor(128).uniform_() for i in range(nGPUs)]
expected = torch.cat(inputs, 0)
inputs = [inputs[i].cuda(i) for i in range(nGPUs)]
outputs = [torch.cuda.FloatTensor(128 * nGPUs, device=i)
for i in range(nGPUs)]
nccl.all_gather(inputs, outputs)
for tensor in outputs:
self.assertEqual(tensor, expected)
@unittest.skipIf(nGPUs < 2, "only one GPU detected")
def test_reduce_scatter(self):
in_size = 32 * nGPUs
out_size = 32
inputs = [torch.FloatTensor(in_size).uniform_() for i in range(nGPUs)]
expected = torch.FloatTensor(in_size).zero_()
for t in inputs:
expected.add_(t)
expected = expected.view(nGPUs, 32)
inputs = [inputs[i].cuda(i) for i in range(nGPUs)]
outputs = [torch.cuda.FloatTensor(out_size, device=i)
for i in range(nGPUs)]
nccl.reduce_scatter(inputs, outputs)
for i in range(nGPUs):
self.assertEqual(outputs[i], expected[i])
if __name__ == '__main__':
run_tests()