| import torch |
| |
| |
| # https://pytorch.org/docs/stable/torch.html#random-sampling |
| |
| class SamplingOpsModule(torch.nn.Module): |
| def __init__(self): |
| super(SamplingOpsModule, self).__init__() |
| |
| def forward(self): |
| a = torch.empty(3, 3).uniform_(0.0, 1.0) |
| size = (1, 4) |
| weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) |
| return len( |
| # torch.seed(), |
| # torch.manual_seed(0), |
| torch.bernoulli(a), |
| # torch.initial_seed(), |
| torch.multinomial(weights, 2), |
| torch.normal(2.0, 3.0, size), |
| torch.poisson(a), |
| torch.rand(2, 3), |
| torch.rand_like(a), |
| torch.randint(10, size), |
| torch.randint_like(a, 4), |
| torch.rand(4), |
| torch.randn_like(a), |
| torch.randperm(4), |
| a.bernoulli_(), |
| a.cauchy_(), |
| a.exponential_(), |
| a.geometric_(0.5), |
| a.log_normal_(), |
| a.normal_(), |
| a.random_(), |
| a.uniform_(), |
| ) |