blob: f9487a3d546a28a51a8c32020c6395fba8e3c5b4 [file] [log] [blame]
import torch
from torch.nn.parameter import Parameter
from .module import Module
from .batchnorm import _BatchNorm
from .. import functional as F
class LocalResponseNorm(Module):
r"""Applies local response normalization over an input signal composed
of several input planes, where channels occupy the second dimension.
Applies normalization across channels.
.. math::
b_{c} = a_{c}\left(k + \frac{\alpha}{n}
\sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}
Args:
size: amount of neighbouring channels used for normalization
alpha: multiplicative factor. Default: 0.0001
beta: exponent. Default: 0.75
k: additive factor. Default: 1
Shape:
- Input: :math:`(N, C, ...)`
- Output: :math:`(N, C, ...)` (same shape as input)
Examples:
>>> lrn = nn.LocalResponseNorm(2)
>>> signal_2d = autograd.Variable(torch.randn(32, 5, 24, 24))
>>> signal_4d = autograd.Variable(torch.randn(16, 5, 7, 7, 7, 7))
>>> output_2d = lrn(signal_2d)
>>> output_4d = lrn(signal_4d)
"""
def __init__(self, size, alpha=1e-4, beta=0.75, k=1):
super(LocalResponseNorm, self).__init__()
self.size = size
self.alpha = alpha
self.beta = beta
self.k = k
def forward(self, input):
return F.local_response_norm(input, self.size, self.alpha, self.beta,
self.k)
def __repr__(self):
return self.__class__.__name__ + '(' \
+ str(self.size) \
+ ', alpha=' + str(self.alpha) \
+ ', beta=' + str(self.beta) \
+ ', k=' + str(self.k) + ')'
class CrossMapLRN2d(Module):
def __init__(self, size, alpha=1e-4, beta=0.75, k=1):
super(CrossMapLRN2d, self).__init__()
self.size = size
self.alpha = alpha
self.beta = beta
self.k = k
def forward(self, input):
return self._backend.CrossMapLRN2d(self.size, self.alpha, self.beta,
self.k)(input)
def __repr__(self):
return self.__class__.__name__ + '(' \
+ str(self.size) \
+ ', alpha=' + str(self.alpha) \
+ ', beta=' + str(self.beta) \
+ ', k=' + str(self.k) + ')'
class LayerNorm(Module):
r"""Applies Layer Normalization over a mini-batch of inputs as described in
the paper `Layer Normalization`_ .
.. math::
y = \frac{x - mean[x]}{ \sqrt{Var[x]} + \epsilon} * gamma + beta
The mean and standard-deviation are calculated separately over the last
certain number dimensions with shape specified by :attr:`normalized_shape`.
Gamma and beta are learnable parameters of :attr:`normalized_shape` if
:attr:`elementwise_affine` is ``True``.
.. note::
Unlike Batch Normalization and Instance Normalization, which applies
scalar scale and bias for each entire channel/plane with the
:attr:`affine` option, Layer Normalization applies per-element scale and
bias with :attr:`elementwise_affine`.
By default, this layer uses statistics computed from input data in both
training and evaluation modes.
If :attr:`track_running_stats` is set to ``True``, during training this
layer keeps running estimates of its computed mean and variance, which are
then used for normalization during evaluation. The running estimates are
kept with a default :attr:`momentum` of 0.1.
.. note::
This :attr:`momentum` argument is different from one used in optimizer
classes and the conventional notion of momentum. Mathematically, the
update rule for running statistics here is
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x}_\text{new} + \text{momemtum} \times x_t`,
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
new observed value.
Args:
normalized_shape (list or torch.Size): input shape from an expected input of size
`[* x normalized_shape[0] x normalized_shape[1] x ... x normalized_shape[-1]]`
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters. Default: ``True``
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples:
>>> input = autograd.Variable(torch.randn(20, 5, 10, 10))
>>> # With Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:])
>>> # Without Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
>>> output = m(input)
.. _`Layer Normalization`: https://arxiv.org/abs/1607.06450
"""
def __init__(self, normalized_shape, eps=1e-5, momentum=0.1,
elementwise_affine=True, track_running_stats=False):
super(LayerNorm, self).__init__()
self.normalized_shape = torch.Size(normalized_shape)
self.eps = eps
self.momentum = momentum
self.elementwise_affine = elementwise_affine
self.track_running_stats = track_running_stats
if self.elementwise_affine:
self.weight = Parameter(torch.Tensor(*normalized_shape))
self.bias = Parameter(torch.Tensor(*normalized_shape))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
if self.track_running_stats:
self.register_buffer('running_mean', torch.zeros(1))
self.register_buffer('running_var', torch.ones(1))
else:
self.register_parameter('running_mean', None)
self.register_parameter('running_var', None)
self.reset_parameters()
def reset_parameters(self):
if self.track_running_stats:
self.running_mean.zero_()
self.running_var.fill_(1)
if self.elementwise_affine:
self.weight.data.uniform_()
self.bias.data.zero_()
def forward(self, input):
return F.layer_norm(
input, self.normalized_shape, self.running_mean, self.running_var,
self.weight, self.bias, self.training or not self.track_running_stats,
self.momentum, self.eps)
def __repr__(self):
return ('{name}({normalized_shape}, eps={eps}, momentum={momentum},'
' elementwise_affine={elementwise_affine},'
' track_running_stats={track_running_stats})'
.format(name=self.__class__.__name__, **self.__dict__))
# TODO: ContrastiveNorm2d
# TODO: DivisiveNorm2d
# TODO: SubtractiveNorm2d