| import torch |
| import torch.jit |
| import numpy as np |
| import unittest |
| from caffe2.python import core |
| from common_utils import TestCase, run_tests |
| |
| |
| def canonical(graph): |
| return str(torch._C._jit_pass_canonicalize(graph)) |
| |
| |
| @unittest.skipIf("Relu_ENGINE_DNNLOWP" not in core._REGISTERED_OPERATORS, "fbgemm-based Caffe2 ops are not linked") |
| class TestQuantized(TestCase): |
| def test_relu(self): |
| a = (torch.tensor([4, 6, 1, 10], dtype=torch.uint8), 0.01, 5) |
| r = torch.ops.c10.quantized_relu(a) |
| np.testing.assert_equal(r[0].numpy(), torch.tensor([5, 6, 5, 10], dtype=torch.uint8).numpy()) |
| np.testing.assert_almost_equal(0.01, r[1]) |
| self.assertEqual(5, r[2]) |
| |
| def test_quantize(self): |
| a = (torch.tensor([4, 6, 1, 10], dtype=torch.uint8), 0.01, 5) |
| r = torch.ops.c10.dequantize(a) |
| np.testing.assert_almost_equal(r.numpy(), [-0.01, 0.01, -0.04, 0.05]) |
| # default args |
| q_def = torch.ops.c10.quantize(r) |
| # specified |
| q = torch.ops.c10.quantize(r, scale=0.01, zero_point=5) |
| np.testing.assert_equal(q[0].numpy(), a[0].numpy()) |
| np.testing.assert_almost_equal(q[1], a[1]) |
| self.assertEqual(q[2], a[2]) |
| |
| def test_script(self): |
| @torch.jit.script |
| def foo(x): |
| # type: (Tuple[Tensor, float, int]) -> Tuple[Tensor, float, int] |
| return torch.ops.c10.quantized_relu(x) |
| self.assertExpectedInline(canonical(foo.graph), '''\ |
| graph(%x : (Tensor, float, int)): |
| %1 : (Tensor, float, int) = c10::quantized_relu(%x) |
| return (%1) |
| ''') |
| |
| |
| if __name__ == '__main__': |
| run_tests() |