blob: 599ce2a30fa2f4fe410bfe520e4c016a4f50b924 [file] [log] [blame]
#ifndef CAFFE2_OPERATORS_TRANSPOSE_H_
#define CAFFE2_OPERATORS_TRANSPOSE_H_
#include <algorithm>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <class Context>
class TransposeOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_DISPATCH_HELPER;
TransposeOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
axes_(OperatorBase::GetRepeatedArgument<int>("axes")) {
// We will check the legality of axes_: it should be from 0 to axes_.size().
std::vector<int> axes_sorted = axes_;
std::sort(axes_sorted.begin(), axes_sorted.end());
for (std::size_t i = 0; i < axes_sorted.size(); ++i) {
if (axes_sorted[i] != i) {
CAFFE_THROW("Axes should be a permutation of 0 to ndim.");
}
}
}
~TransposeOp() = default;
bool RunOnDevice() override {
// Do the actual transpose, which is implemented in DoRunWithType().
return DispatchHelper<TensorTypes<float, double, int, TIndex>>::call(
this, Input(0));
}
private:
template <typename T>
bool DoRunWithType() {
const auto& X = Input(0);
auto* Y = Output(0);
const int ndim = X.ndim();
if (axes_.empty()) {
axes_.resize(ndim);
std::iota(axes_.rbegin(), axes_.rend(), 0);
} else {
CAFFE_ENFORCE_EQ(ndim, axes_.size());
}
const std::vector<int> X_dims(X.dims().cbegin(), X.dims().cend());
std::vector<int> Y_dims(ndim);
for (int i = 0; i < ndim; ++i) {
Y_dims[i] = X_dims[axes_[i]];
}
Y->Resize(Y_dims);
math::Transpose<T, Context>(
X_dims.size(),
X_dims.data(),
axes_.data(),
X.template data<T>(),
Y->template mutable_data<T>(),
&context_);
return true;
}
std::vector<int> axes_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_TRANSPOSE_H_