blob: 25d594aa459ff65cd5bfc4e90615123aad340f9d [file] [log] [blame]
from typing import Union
from tools.codegen.model import (NativeFunction, NativeFunctionsGroup)
from tools.codegen.api.lazy import LazyIrSchema
from tools.codegen.api.types import OptionalCType
def ts_lowering_body(f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
# for now, we just want one IR class decl and soon after also the method defs
# and we use the functional version not out/inplace.
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
schema = LazyIrSchema(func)
emplace_arguments = []
for arg in schema.positional_args:
if arg.is_lazy_value:
if isinstance(arg.lazy_type, OptionalCType):
emplace_arguments.append(f"has_{arg.name} ? loctx->GetOutputOp(operand(i++)) : nullptr")
continue
emplace_arguments.append('loctx->GetOutputOp(operand(i++))')
continue
emplace_arguments.append(f'"{arg.name}", {arg.name}')
emplace_arguments_str = "\n ".join(
[f"arguments.emplace_back({a});" for a in emplace_arguments])
emplace_kwarg_values = [f'"{arg.name}", loctx->GetOutputOp(operand(i++))' for arg in schema.keyword_values]
emplace_kwarg_scalars = [f'"{arg.name}", {arg.name}' for arg in schema.keyword_scalars]
emplace_kwarguments = "\n ".join(
[f"kwarguments.emplace_back({a});" for a in emplace_kwarg_values + emplace_kwarg_scalars])
return f"""\
std::vector<torch::jit::NamedValue> arguments;
std::vector<torch::jit::NamedValue> kwarguments;
arguments.reserve({len(emplace_arguments)});
kwarguments.reserve({len(emplace_kwarg_values + emplace_kwarg_scalars)});
size_t i = 0;
{emplace_arguments_str}
{emplace_kwarguments}
torch::lazy::TSOpVector {schema.aten_name}_out = torch::lazy::LowerTSBuiltin(function, op().op, arguments, kwarguments);
CHECK_EQ({schema.aten_name}_out.size(), {len(func.returns)});
return {schema.aten_name}_out;
"""