| #include <ATen/ATen.h> |
| #include <ATen/NativeFunctions.h> |
| #include <ATen/AccumulateType.h> |
| #include <ATen/CPUApplyUtils.h> |
| #include <ATen/Parallel.h> |
| #include <ATen/Config.h> |
| |
| #include <ATen/detail/CUDAHooksInterface.h> |
| |
| #include <vector> |
| |
| static const int MIOPEN_DIM_MAX = 4; |
| |
| namespace at { namespace native { |
| |
| namespace { |
| void check_dims_match_num_input_features(const char* arg_name, int64_t expected, int64_t actual){ |
| AT_CHECK(actual == expected, |
| arg_name, " should contain ", expected, " elements not ", actual); |
| } |
| |
| static inline Tensor repeat_if_defined(const Tensor& t, int64_t repeat) { |
| if (t.defined()) { |
| return t.repeat(repeat); |
| } |
| return t; |
| } |
| } |
| |
| // TensorAccessor when it is defined to work around undefined... |
| template <typename scalar_t> |
| static TensorAccessor<scalar_t, 1> conditional_accessor_1d(const Tensor& t) { |
| if (! t.defined()) { |
| return TensorAccessor<scalar_t, 1>(nullptr, nullptr, nullptr); |
| } |
| return t.accessor<scalar_t, 1>(); |
| } |
| |
| |
| template<typename scalar_t> |
| std::tuple<Tensor,Tensor,Tensor> batch_norm_cpu_template(const Tensor& input, const Tensor& weight, const Tensor& bias, |
| const Tensor& running_mean, const Tensor& running_var, bool train, double momentum, double eps) { |
| |
| using accscalar_t = at::acc_type<scalar_t, false>; |
| Tensor output = at::empty_like(input); |
| |
| int64_t n_input = input.size(1); |
| int64_t n = input.numel() / n_input; |
| |
| Tensor save_mean; |
| Tensor save_invstd; |
| const int64_t zero = 0; |
| if (train) { |
| save_mean = at::empty({n_input}, input.options()); |
| save_invstd = at::empty({n_input}, input.options()); |
| } |
| auto save_mean_a = conditional_accessor_1d<scalar_t>(save_mean); |
| auto save_invstd_a = conditional_accessor_1d<scalar_t>(save_invstd); |
| |
| auto running_mean_a = conditional_accessor_1d<scalar_t>(running_mean); |
| auto running_var_a = conditional_accessor_1d<scalar_t>(running_var); |
| |
| parallel_for(0, n_input, 1, [&](int64_t b_begin, int64_t b_end) { |
| for (int64_t f = b_begin; f < b_end; ++f) { |
| Tensor in = input.select(1, f); |
| Tensor out = output.select(1, f); |
| |
| scalar_t mean, invstd; |
| |
| if (train) { |
| // compute mean per input |
| accscalar_t sum = 0; |
| CPU_tensor_apply1<scalar_t>(in, [&] (const scalar_t& i) { |
| sum += i; |
| }); |
| |
| mean = (scalar_t) (sum / n); |
| save_mean_a[f] = mean; |
| |
| // compute variance per input |
| sum = 0; |
| CPU_tensor_apply1<scalar_t>(in, [&] (const scalar_t& i) { |
| sum += (i - mean) * (i - mean); |
| }); |
| |
| if (sum == 0 && eps == 0.0) { |
| invstd = 0; |
| } else { |
| invstd = (scalar_t) (1 / std::sqrt(sum/n + eps)); |
| } |
| save_invstd_a[f] = invstd; |
| |
| // update running averages |
| if (running_mean.defined()) { |
| running_mean_a[f] = momentum * mean + (1 - momentum) * running_mean_a[f]; |
| } |
| if (running_var.defined()) { |
| accscalar_t unbiased_var = sum / (n - 1); |
| running_var_a[f] = momentum * unbiased_var + (1 - momentum) * running_var_a[f]; |
| } |
| } else { |
| mean = running_mean_a[f]; |
| invstd = 1 / std::sqrt(running_var_a[f] + eps); |
| } |
| |
| // compute output |
| scalar_t w = weight.defined() ? weight.data<scalar_t>()[f * weight.stride(0)] : 1; |
| scalar_t b = bias.defined() ? bias.data<scalar_t>()[f * bias.stride(0)] : 0; |
| |
| CPU_tensor_apply2<scalar_t,scalar_t>(out, in, [&](scalar_t& o, const scalar_t& i) { |
| o = ((i - mean) * invstd) * w + b; |
| }); |
| } |
| }); |
| return std::make_tuple(output, save_mean, save_invstd); |
| } |
| |
| |
| template<typename scalar_t> |
| std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_cpu_template(const Tensor& grad_out_, const Tensor& input, const Tensor& weight, |
| const Tensor& running_mean, const Tensor& running_var, const Tensor& save_mean, const Tensor& save_invstd, |
| bool train, double eps, std::array<bool,3> grad_input_mask) { |
| |
| using accscalar_t = at::acc_type<scalar_t, false>; |
| |
| Tensor grad_input; |
| Tensor grad_weight; |
| Tensor grad_bias; |
| if (grad_input_mask[0]) { |
| grad_input = at::empty_like(input); |
| } |
| if (grad_input_mask[1]) { |
| grad_weight = at::empty_like(weight); |
| } |
| if (grad_input_mask[2]) { |
| grad_bias = at::empty_like(weight); |
| } |
| |
| auto weight_a = conditional_accessor_1d<scalar_t>(weight); |
| auto grad_weight_a = conditional_accessor_1d<scalar_t>(grad_weight); |
| auto grad_bias_a = conditional_accessor_1d<scalar_t>(grad_bias); |
| |
| int64_t n_input = input.size(1); |
| int64_t n = input.numel() / n_input; |
| |
| auto save_mean_a = conditional_accessor_1d<scalar_t>(save_mean); |
| auto save_invstd_a = conditional_accessor_1d<scalar_t>(save_invstd); |
| |
| auto running_mean_a = conditional_accessor_1d<scalar_t>(running_mean); |
| auto running_var_a = conditional_accessor_1d<scalar_t>(running_var); |
| |
| |
| parallel_for(0, n_input, 1, [&](int64_t b_begin, int64_t b_end) { |
| for (int64_t f = b_begin; f < b_end; ++f) { |
| Tensor in = input.select(1, f); |
| Tensor grad_out = grad_out_.select(1, f); |
| |
| scalar_t w = weight.defined() ? weight_a[f] : 1; |
| |
| scalar_t mean, invstd; |
| if (train) { |
| mean = save_mean_a[f]; |
| invstd = save_invstd_a[f]; |
| } else { |
| mean = running_mean_a[f]; |
| invstd = 1 / std::sqrt(running_var_a[f] + eps); |
| } |
| |
| // sum over all gradOutput in feature plane |
| accscalar_t sum = 0; |
| CPU_tensor_apply1<scalar_t>(grad_out, [&](const scalar_t& g) { |
| sum += g; |
| }); |
| |
| // dot product of the Q(X) and gradOuput |
| accscalar_t dotp = 0; |
| CPU_tensor_apply2<scalar_t,scalar_t>(in, grad_out, [&](const scalar_t& i, const scalar_t& go) { |
| dotp += (i - mean) * go; |
| }); |
| |
| if (grad_input_mask[0]) { |
| Tensor grad_in = grad_input.select(1, f); |
| if (train) { |
| // when in training mode |
| // Q(X) = X - E[x] ; i.e. input centered to zero mean |
| // Y = Q(X) / σ ; i.e. BN output before weight and bias |
| // dL/dX = (Q(dL/dY) - dot(Y, dL/dY) * Y) / σ * w |
| |
| // projection of gradOutput on to output scaled by std |
| scalar_t k = (scalar_t) dotp * invstd * invstd / n; |
| |
| CPU_tensor_apply2<scalar_t,scalar_t>(grad_in, in, [&](scalar_t& gi, const scalar_t& i) { |
| gi = (i - mean)* k; |
| }); |
| |
| accscalar_t grad_mean = sum / n; |
| CPU_tensor_apply2<scalar_t,scalar_t>(grad_in, grad_out, [&](scalar_t& gi, const scalar_t& go) { |
| gi = (go - grad_mean - gi) * invstd * w; |
| }); |
| } else { |
| // when in evaluation mode |
| // Q(X) = X - running_mean ; i.e. input centered to zero mean |
| // Y = Q(X) / running_std ; i.e. BN output before weight and bias |
| // dL/dX = w / running_std |
| CPU_tensor_apply2<scalar_t,scalar_t>(grad_in, grad_out, [&](scalar_t& gi, const scalar_t& go) { |
| gi = go * invstd * w; |
| }); |
| } |
| } |
| if (grad_input_mask[1]) { |
| grad_weight_a[f] = dotp * invstd; |
| } |
| |
| if (grad_input_mask[2]) { |
| grad_bias_a[f] = sum; |
| } |
| } |
| }); |
| return std::make_tuple(grad_input, grad_weight, grad_bias); |
| } |
| |
| Tensor batch_norm( |
| const Tensor& input, const Tensor& weight /* optional */, const Tensor& bias /* optional */, |
| const Tensor& running_mean /* optional */, const Tensor& running_var /* optional */, |
| bool training, double momentum, double eps, bool cudnn_enabled) { |
| |
| auto num_features = input.sizes()[1]; |
| if (running_mean.defined()) { |
| check_dims_match_num_input_features("running_mean", num_features, running_mean.numel()); |
| } else if (!training) { |
| AT_ERROR("running_mean must be defined in evaluation mode"); |
| } |
| if (running_var.defined()) { |
| check_dims_match_num_input_features("running_var", num_features, running_var.numel()); |
| } else if (!training) { |
| AT_ERROR("running_var must be defined in evaluation mode"); |
| } |
| if (weight.defined()) { |
| check_dims_match_num_input_features("weight", num_features, weight.numel()); |
| } |
| if (bias.defined()) { |
| check_dims_match_num_input_features("bias", num_features, bias.numel()); |
| } |
| |
| bool use_cudnn = false; |
| use_cudnn = (input.is_cuda() |
| && (input.type().scalarType() != at::kHalf |
| || weight.type().scalarType() == at::kFloat) |
| && weight.defined() && bias.defined() |
| && ((running_mean.defined() && running_var.defined()) |
| || (!running_mean.defined() && !running_var.defined() && training)) |
| && input.size(0) <= 131070 |
| && detail::getCUDAHooks().compiledWithCuDNN() |
| && cudnn_enabled && detail::getCUDAHooks().versionCuDNN() >= 5110L); |
| |
| if (use_cudnn && eps >= detail::getCUDAHooks().batchnormMinEpsilonCuDNN()) { |
| return std::get<0>(at::cudnn_batch_norm( |
| input.contiguous(), weight.contiguous(), |
| bias.contiguous(), |
| running_mean.defined() ? running_mean.contiguous() : running_mean, |
| running_var.defined() ? running_var.contiguous() : running_var, |
| training, momentum, eps)); |
| } |
| |
| bool use_miopen = (input.is_cuda() |
| && input.dim() <= MIOPEN_DIM_MAX |
| && input.type().scalarType() != at::kDouble |
| && (weight.type().scalarType() != at::kHalf) |
| && weight.defined() && bias.defined() |
| && ((running_mean.defined() && running_var.defined()) |
| || (!running_mean.defined() && !running_var.defined() && training)) |
| && detail::getCUDAHooks().compiledWithMIOpen() |
| ); |
| |
| if (use_miopen) { |
| return std::get<0>(at::miopen_batch_norm( |
| input.contiguous(), weight.contiguous(), bias.contiguous(), |
| running_mean.defined() ? running_mean.contiguous() : running_mean, |
| running_var.defined() ? running_var.contiguous() : running_var, |
| training, momentum, eps)); |
| } |
| |
| return std::get<0>(at::native_batch_norm(input, weight, bias, |
| running_mean, running_var, training, momentum, eps)); |
| } |
| |
| Tensor instance_norm( |
| const Tensor& input, const Tensor& weight /* optional */, const Tensor& bias /* optional */, |
| const Tensor& running_mean /* optional */, const Tensor& running_var /* optional */, |
| bool use_input_stats, double momentum, double eps, bool cudnn_enabled) { |
| AT_CHECK(use_input_stats || (running_mean.defined() && running_var.defined()), |
| "Expected running_mean and running_var to be defined when use_input_stats is false"); |
| std::vector<int64_t> shape = input.sizes().vec(); |
| int64_t b = input.size(0); |
| int64_t c = input.size(1); |
| shape[1] = b * c; |
| shape[0] = 1; |
| |
| Tensor weight_ = repeat_if_defined(weight, b); |
| Tensor bias_ = repeat_if_defined(bias, b); |
| Tensor running_mean_ = repeat_if_defined(running_mean, b); |
| Tensor running_var_ = repeat_if_defined(running_var, b); |
| |
| auto input_reshaped = input.contiguous().view(shape); |
| auto out = at::batch_norm(input_reshaped, weight_, bias_, running_mean_, running_var_, |
| use_input_stats, momentum, eps, cudnn_enabled); |
| |
| // we alias running_mean and running_var because they are const but we want to modify their data |
| if (running_mean.defined()) { |
| at::alias(running_mean).copy_(running_mean_.view({ b, c }).mean(0, false)); |
| } |
| if (running_var.defined()) { |
| at::alias(running_var).copy_(running_var_.view({ b, c }).mean(0, false)); |
| } |
| |
| return out.view(input.sizes()); |
| } |
| |
| Tensor layer_norm(const Tensor& input, IntList normalized_shape, |
| const Tensor& weight /* optional */, const Tensor& bias /* optional */, |
| double eps, bool cudnn_enabled) { |
| |
| int64_t normalized_ndim = normalized_shape.size(); |
| |
| AT_CHECK(normalized_ndim >= 1, |
| "Expected normalized_shape to be at least 1-dimensional, i.e., ", |
| "containing at least one element, but got normalized_shape=", |
| normalized_shape); |
| |
| AT_CHECK(!weight.defined() || weight.sizes().equals(normalized_shape), |
| "Expected weight to be of same shape as normalized_shape, but got ", |
| "weight of shape ", weight.sizes(), " and normalized_shape=", |
| normalized_shape); |
| AT_CHECK(!bias.defined() || bias.sizes().equals(normalized_shape), |
| "Expected bias to be of same shape as normalized_shape, but got ", |
| "bias of shape ", bias.sizes(), " and normalized_shape=", |
| normalized_shape); |
| |
| auto input_shape = input.sizes(); |
| auto input_ndim = input.dim(); |
| |
| if (input_ndim < normalized_ndim || |
| !input_shape.slice(input_ndim - normalized_ndim).equals(normalized_shape)) { |
| std::stringstream ss; |
| ss << "Given normalized_shape=" << normalized_shape |
| << ", expected input with shape [*"; |
| for (auto size : normalized_shape) { |
| ss << ", " << size; |
| } |
| ss << "], but got input of size" << input_shape; |
| AT_ERROR(ss.str()); |
| } |
| |
| int64_t n = 1; |
| for (int64_t i = 0; i < input_ndim - normalized_ndim; i++) { |
| n *= input_shape[i]; |
| } |
| |
| // Apply layer norm |
| auto input_reshaped = input.contiguous().view({1, n, -1}); |
| |
| auto out = at::batch_norm(input_reshaped, {}, {}, {}, {}, true, 0, eps, |
| cudnn_enabled); |
| out = out.view(input_shape); |
| |
| if (weight.defined() && bias.defined()) { |
| return bias.addcmul(out, weight, 1); |
| } else if (weight.defined()) { |
| return out.mul(weight); |
| } else if (bias.defined()) { |
| return out.add(bias); |
| } else { |
| return out; |
| } |
| } |
| |
| Tensor group_norm(const Tensor& input, int64_t num_groups, |
| const Tensor& weight /* optional */, const Tensor& bias /* optional */, |
| double eps, bool cudnn_enabled) { |
| |
| auto input_shape = input.sizes(); |
| int64_t b = input.size(0); |
| int64_t c = input.size(1); |
| |
| AT_CHECK(c % num_groups == 0, |
| "Expected number of channels in input to be divisible by ", |
| "num_groups, but got input of shape ", input.sizes(), " and " |
| "num_groups=", num_groups); |
| |
| AT_CHECK(!weight.defined() || (weight.dim() == 1 && weight.numel() == c), |
| "Expected weight to be a vector of size equal to the number of ", |
| "channels in input, but got weight of shape ", weight.sizes(), |
| " and input of shape ", input.sizes()); |
| AT_CHECK(!bias.defined() || (bias.dim() == 1 && bias.numel() == c), |
| "Expected bias to be a vector of size equal to the number of ", |
| "channels in input, but got bias of shape ", weight.sizes(), |
| " and input of shape ", input.sizes()); |
| |
| // Apply group norm |
| auto input_reshaped = input.contiguous().view({1, b * num_groups, -1}); |
| |
| auto out = at::batch_norm(input_reshaped, {}, {}, {}, {}, true, 0, eps, |
| cudnn_enabled); |
| out = out.view(input_shape); |
| |
| if (!weight.defined() && !bias.defined()) { |
| return out; |
| } |
| |
| std::vector<int64_t> affine_param_shape(input.dim(), 1); |
| affine_param_shape[1] = c; |
| |
| if (weight.defined() && bias.defined()) { |
| return bias.view(affine_param_shape).addcmul(out, weight.view(affine_param_shape), 1); |
| } else if (weight.defined()) { |
| return out.mul(weight.view(affine_param_shape)); |
| } else { |
| return out.add(bias.view(affine_param_shape)); |
| } |
| } |
| |
| std::tuple<Tensor, Tensor, Tensor> batch_norm_cpu(const Tensor& self, const Tensor& weight, const Tensor& bias, |
| const Tensor& running_mean, const Tensor& running_var, |
| bool train, double momentum, double eps) { |
| return AT_DISPATCH_FLOATING_TYPES(self.type(), "batch_norm", [&] { |
| return batch_norm_cpu_template<scalar_t>(self, weight, bias, running_mean, running_var, train, momentum, eps); |
| }); |
| } |
| |
| std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_cpu(const Tensor& grad_out, const Tensor& self, const Tensor& weight, |
| const Tensor& running_mean, const Tensor& running_var, const Tensor& save_mean, const Tensor& save_invstd, |
| bool train, double eps, std::array<bool,3> grad_input_mask) { |
| return AT_DISPATCH_FLOATING_TYPES(self.type(), "batch_norm_backward", [&] { |
| return batch_norm_backward_cpu_template<scalar_t>(grad_out, self, weight, running_mean, running_var, save_mean, save_invstd, train, eps, grad_input_mask); |
| }); |
| } |
| |
| }} // at::native |