| import torch |
| import torch.jit |
| import torch.nn as nn |
| import torch.nn.functional as F |
| import unittest |
| from itertools import product |
| from torch.autograd import Variable, Function |
| from torch.autograd.function import traceable |
| from common import TestCase, run_tests |
| import io |
| |
| try: |
| import torchvision |
| HAS_TORCHVISION = True |
| except ImportError: |
| HAS_TORCHVISION = False |
| |
| skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") |
| |
| |
| def LSTMCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None): |
| hx, cx = hidden |
| gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh) |
| |
| ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) |
| ingate = F.sigmoid(ingate) |
| forgetgate = F.sigmoid(forgetgate) |
| cellgate = F.tanh(cellgate) |
| outgate = F.sigmoid(outgate) |
| |
| cy = (forgetgate * cx) + (ingate * cellgate) |
| hy = outgate * F.tanh(cy) |
| return hy, cy |
| |
| |
| class TestJit(TestCase): |
| maxDiff = None |
| |
| def test_simple(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| def f(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| trace, z = torch.jit.trace(f, (x, y), nderivs=0) |
| |
| torch._C._jit_pass_lint(trace) |
| torch._C._jit_pass_onnx(trace) |
| torch._C._jit_pass_lint(trace) |
| |
| self.assertExpected(str(trace)) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") |
| def test_lstm_fusion(self): |
| input = Variable(torch.randn(3, 10).cuda()) |
| hx = Variable(torch.randn(3, 20).cuda()) |
| cx = Variable(torch.randn(3, 20).cuda()) |
| module = nn.LSTMCell(10, 20).cuda() # Just to allocate weights with correct sizes |
| |
| trace, _ = torch.jit.trace(LSTMCell, (input, (hx, cx)) + tuple(module.parameters())) |
| torch._C._jit_pass_lint(trace) |
| torch._C._jit_pass_onnx(trace) |
| torch._C._jit_pass_lint(trace) |
| torch._C._jit_pass_fuse(trace) |
| torch._C._jit_pass_lint(trace) |
| self.assertExpected(str(trace)) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") |
| def test_run_lstm_fusion(self): |
| input = Variable(torch.randn(3, 10).cuda()) |
| hx = Variable(torch.randn(3, 20).cuda()) |
| cx = Variable(torch.randn(3, 20).cuda()) |
| module = nn.LSTMCell(10, 20).cuda() # Just to allocate weights with correct sizes |
| |
| CompiledLSTMCell = torch.jit.compile(nderivs=0)(LSTMCell) |
| |
| z = CompiledLSTMCell(input, (hx, cx), *module.parameters()) |
| z2 = CompiledLSTMCell(input, (hx, cx), *module.parameters(), _assert_compiled=True) |
| self.assertEqual(z, z2) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") |
| def test_fusion_distribute(self): |
| def f(x, y): |
| z1, z2 = (x + y).chunk(2, dim=1) |
| return z1 * z2 |
| x = Variable(torch.randn(4, 4).cuda()) |
| y = Variable(torch.randn(4, 4).cuda()) |
| trace, _ = torch.jit.trace(f, (x, y), nderivs=0) |
| torch._C._jit_pass_lint(trace) |
| self.assertExpected(str(trace), 'raw') |
| torch._C._jit_pass_onnx(trace) |
| torch._C._jit_pass_lint(trace) |
| self.assertExpected(str(trace), 'onnx') |
| torch._C._jit_pass_fuse(trace) |
| torch._C._jit_pass_lint(trace) |
| self.assertExpected(str(trace)) |
| |
| def test_cse(self): |
| x = Variable(torch.Tensor([0.4, 0.3]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7, 0.5]), requires_grad=True) |
| |
| trace = torch._C._tracer_enter((x, y), 0) |
| w = (x + y) * (x + y) * (x + y) |
| t = torch.tanh(w) + torch.tanh(w) |
| z = (x + y) * (x + y) * (x + y) + t |
| torch._C._tracer_exit((z,)) |
| torch._C._jit_pass_lint(trace) |
| torch._C._jit_pass_onnx(trace) |
| torch._C._jit_pass_lint(trace) |
| torch._C._jit_pass_cse(trace) |
| |
| self.assertExpected(str(trace)) |
| |
| def test_compile_run_twice(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=0, optimize=False) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| z = doit(x, y) |
| z2 = doit(x, y, _assert_compiled=True) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y)))) |
| self.assertEqual(z, z2) |
| |
| def test_traced_function(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=0) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| z = doit(x, y) |
| z2 = doit(x, y, _assert_compiled=True) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y)))) |
| self.assertEqual(z, z2) |
| |
| def test_disabled_traced_function(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile(enabled=False) |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| z = doit(x, y) |
| z2 = doit(x, y) |
| self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y)))) |
| self.assertEqual(z, z2) |
| |
| def test_assign_traces(self): |
| """Check that output Variables are assigned traces before they are saved.""" |
| @traceable |
| class MyFn(Function): |
| @staticmethod |
| def forward(ctx, a): |
| out = a * 2 |
| ctx.save_for_backward(out) |
| return out |
| |
| @staticmethod |
| def backward(ctx, grad_a): |
| a, = ctx.saved_variables |
| return a * grad_a |
| |
| x = Variable(torch.randn(10, 10), requires_grad=True) |
| trace, out = torch.jit.trace(MyFn.apply, x, nderivs=1) |
| out.sum().backward() |
| torch._C._jit_pass_dce(trace) |
| self.assertExpected(str(trace)) |
| |
| def test_traced_module(self): |
| input = Variable(torch.randn(3, 10)) |
| hx = Variable(torch.randn(3, 20)) |
| cx = Variable(torch.randn(3, 20)) |
| |
| @torch.jit.compile(nderivs=0) |
| class MyLSTMCell(nn.LSTMCell): |
| pass |
| |
| lstm = MyLSTMCell(10, 20) |
| |
| out = lstm(input, (hx, cx)) |
| out2 = lstm(input, (hx, cx), _assert_compiled=True) |
| self.assertEqual(out, out2) |
| |
| def test_autograd_closure(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| trace = torch._C._tracer_enter((x, y), 1) |
| |
| z = torch.sigmoid(x * (x + y)) |
| w = torch.abs(x * x * x + y) + Variable(torch.ones(1)) |
| |
| torch._C._tracer_exit((z, w)) |
| torch._C._jit_pass_lint(trace) |
| |
| (z * w).backward() |
| torch._C._jit_pass_dce(trace) |
| torch._C._jit_pass_lint(trace) |
| |
| x_grad = x.grad.data.clone() |
| x.grad.data.zero_() |
| |
| function = torch._C._jit_createAutogradClosure(trace) |
| torch._C._jit_pass_lint(trace) |
| z2, w2 = function()(x, y) |
| (z2 * w2).backward() |
| self.assertEqual(z, z2) |
| self.assertEqual(w, w2) |
| self.assertEqual(x.grad.data, x_grad) |
| |
| def test_verify(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| @torch.jit.compile |
| def f(x, y): |
| z = torch.sigmoid(x * (x + y)) |
| w = torch.abs(x * x * x + y) + Variable(torch.ones(1)) |
| return z, w |
| |
| torch.jit.verify(f, (x, y), loss_fn=lambda z, w: z * w, devices=[]) |
| |
| def test_constant(self): |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| trace = torch._C._tracer_enter((x,), 0) |
| |
| y = Variable(torch.diag(torch.Tensor([2, 2]))) |
| z = x.matmul(y) |
| |
| torch._C._tracer_exit((z,)) |
| function = torch._C._jit_createAutogradClosure(trace) |
| |
| z2 = function()(x) |
| self.assertEqual(z, z2) |
| |
| y.data.fill_(1000) # make sure the data has been cloned |
| |
| x2 = Variable(torch.ones(2, 2) * 2, requires_grad=True) |
| z3 = function()(x2) |
| self.assertEqual(z3.data, torch.ones(2, 2) * 4) |
| |
| def test_c_function(self): |
| x = Variable(torch.randn(1, 3, 10, 10)) |
| m = nn.Conv2d(3, 8, 3, 1) |
| |
| trace = torch._C._tracer_enter((x,) + tuple(m.parameters()), 0) |
| y = m(x) |
| torch._C._tracer_exit((y,)) |
| self.assertExpected(str(trace)) |
| |
| def test_legacy_fail(self): |
| |
| class MyLegacyFn(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_output): |
| return grad_output |
| |
| x = Variable(torch.Tensor([0]), requires_grad=True) |
| trace = torch._C._tracer_enter((x,), 0) |
| self.assertRaisesRegex(RuntimeError, "MyLegacyFn", lambda: MyLegacyFn()(x)) |
| torch._C._tracer_exit((x,)) |
| |
| def test_inplace_transplant(self): |
| x = Variable(torch.Tensor([0]), requires_grad=True) |
| trace = torch._C._tracer_enter((x,), 0) |
| y = x.clone() |
| y.add_(2) |
| y.add_(3) |
| torch._C._tracer_exit((y,)) |
| self.assertExpected(str(trace)) |
| |
| def test_inplace_flags(self): |
| x = Variable(torch.Tensor([0]), requires_grad=True) |
| trace = torch._C._tracer_enter((x,), 0) |
| y = x + 2 |
| y.add_(2) |
| y.mul_(4) |
| y = y * 2 |
| torch._C._tracer_exit((y,)) |
| ops = [n for n in trace.graph().nodes() if n.kind() != 'Select'] |
| for op in ops: |
| self.assertTrue(op.hasAttribute('__inplace')) |
| inplace_flags = [False, True, True, False] |
| for op, is_inplace in zip(ops, inplace_flags): |
| self.assertEqual(op.i('__inplace'), is_inplace) |
| |
| def test_inplace_check(self): |
| class MyInplaceFn(Function): |
| @staticmethod |
| def forward(self, x): |
| x.add_(1) |
| self.mark_dirty(x) |
| return x |
| |
| @staticmethod |
| def backward(self, grad): |
| return grad |
| |
| @torch.jit.compile(nderivs=0) |
| def fn(x): |
| return MyInplaceFn.apply(x) |
| x = Variable(torch.randn(5, 5)) |
| fn(x) # trace |
| with self.assertRaisesRegex(RuntimeError, 'inplace MyInplaceFn'): |
| fn(x, _assert_compiled=True) # create closure |
| |
| def test_backward(self): |
| a = Variable(torch.randn(2, 2), requires_grad=True) |
| b = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| x = a |
| y = a * b |
| |
| trace = torch._C._tracer_enter((x, y), 2) |
| z = y * 2 * x |
| torch._C._tracer_exit((z,)) |
| torch._C._jit_pass_lint(trace) |
| |
| # Run first backward |
| grad, = torch.autograd.grad(z, x, Variable(torch.ones(2, 2), requires_grad=True), create_graph=True) |
| torch._C._jit_pass_lint(trace) |
| |
| # Run second backward |
| grad.sum().backward(create_graph=True) |
| torch._C._jit_pass_lint(trace) |
| |
| # Run dead code elimination to remove unused trace nodes |
| torch._C._jit_pass_dce(trace) |
| self.assertExpected(str(trace)) |
| |
| def test_backward_opaque(self): |
| x = Variable(torch.randn(3, 3), requires_grad=True) |
| y = Variable(torch.randn(3, 3), requires_grad=True) |
| |
| trace = torch._C._tracer_enter((x, y), 2) |
| z = x.cross(y) |
| torch._C._tracer_exit((z,)) |
| torch._C._jit_pass_lint(trace) |
| |
| # Run first backward |
| grad, = torch.autograd.grad(z, x, Variable(torch.ones(3, 3), requires_grad=True), create_graph=True) |
| torch._C._jit_pass_lint(trace) |
| |
| # Run dead code elimination to remove unused trace nodes |
| torch._C._jit_pass_dce(trace) |
| self.assertExpected(str(trace)) |
| |
| def test_backward_closure(self): |
| """Check that autograd closures handle multiple stages correctly.""" |
| x = Variable(torch.randn(1), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=2) |
| def fn(x): |
| return x * x |
| |
| # Generate trace |
| grad_x, = torch.autograd.grad(fn(x), (x,), create_graph=True) |
| self.assertFalse(fn.has_trace_for(x)) |
| grad_x.backward() |
| self.assertTrue(fn.has_trace_for(x)) |
| |
| x_grad = x.grad.data.clone() |
| x.grad.data.zero_() |
| |
| # Run the trace |
| grad_x, = torch.autograd.grad(fn(x, _assert_compiled=True), (x,), create_graph=True) |
| grad_x.backward() |
| |
| self.assertEqual(x.grad.data, x_grad) |
| |
| def test_trace_expire(self): |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| y = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| def record_trace(num_backwards): |
| trace = torch._C._tracer_enter((x, y), num_backwards) |
| z = y * 2 * x |
| torch._C._tracer_exit((z,)) |
| return z, trace |
| |
| def check(expired, complete): |
| self.assertEqual(trace.is_expired, expired) |
| self.assertEqual(trace.is_complete, complete) |
| |
| z, trace = record_trace(0) |
| check(False, True) |
| del z |
| check(False, True) |
| |
| z, trace = record_trace(1) |
| check(False, False) |
| del z |
| check(True, False) |
| |
| z, trace = record_trace(1) |
| check(False, False) |
| z.sum().backward() |
| check(False, True) |
| del z |
| check(False, True) |
| |
| def test_multiuse_fn(self): |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| w = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| @torch.jit.compile |
| def cell(x, w): |
| return x * w + 2 |
| |
| out = cell(cell(cell(x, w), w), w) |
| self.assertFalse(cell.has_trace_for(x, w)) |
| |
| out.sum().backward() |
| self.assertTrue(cell.has_trace_for(x, w)) |
| |
| torch.jit.verify(cell, (x, w), devices=[]) |
| |
| def test_output_unflatten(self): |
| """Check that outputs of traced functions retain the original structure and nesting""" |
| x = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| def fn(x): |
| return (x * 2, (x ** 2, x + 4, (x + 2,), ), x * 4) |
| |
| expected_out = fn(x) |
| fn = torch.jit.compile(fn) |
| |
| def recursive_sum(obj): |
| if isinstance(obj, Variable): |
| return obj.sum() |
| else: |
| return sum(recursive_sum(o) for o in obj) |
| |
| recursive_sum(fn(x)).backward() |
| self.assertTrue(fn.has_trace_for(x)) |
| self.assertEqual(fn(x, _assert_compiled=True), expected_out) |
| |
| def test_input_flatten(self): |
| """Check that inputs to traced functions are flattened""" |
| def make_var(): |
| return Variable(torch.randn(1), requires_grad=True) |
| x = (make_var(), (make_var(), make_var())) |
| |
| def fn(x, t): |
| y, z = t |
| return x * y * z |
| |
| expected_out = fn(*x) |
| fn = torch.jit.compile(fn) |
| fn(*x).backward() |
| self.assertTrue(fn.has_trace_for(*x)) |
| self.assertEqual(fn(*x, _assert_compiled=True), expected_out) |
| |
| def test_flags(self): |
| x = Variable(torch.randn(2, 2)) |
| y = Variable(torch.randn(2, 2)) |
| |
| @torch.jit.compile |
| def fn(x, y): |
| return (x * x + y * y + x * y).sum() |
| |
| grads = {} |
| for rx, ry in product((True, False), repeat=2): |
| x.requires_grad = rx |
| y.requires_grad = ry |
| |
| self.assertFalse(fn.has_trace_for(x, y)) |
| out = fn(x, y) |
| |
| self.assertFalse(fn.has_trace_for(x, y)) |
| for v, name, compute in [(x, 'x', rx), (y, 'y', ry)]: |
| if not compute: |
| continue |
| grad_v, = torch.autograd.grad(out, v, retain_graph=True) |
| expected_grad = grads.setdefault(name, grad_v) |
| self.assertEqual(grad_v, expected_grad) |
| self.assertEqual(fn.has_trace_for(x, y), rx or ry) |
| |
| def test_volatile_fallback(self): |
| """Check that Traceable falls back to num_backwards=0 if given volatile inputs""" |
| x = Variable(torch.randn(2, 2)) |
| y = Variable(torch.randn(2, 2), requires_grad=True) |
| |
| @torch.jit.compile |
| def fn(x, y): |
| return x * x + x * y |
| |
| out = fn(x, y) |
| self.assertFalse(fn.has_trace_for(x, y)) |
| |
| x.volatile = True |
| self.assertFalse(fn.has_trace_for(x, y)) |
| out = fn(x, y) |
| self.assertTrue(fn.has_trace_for(x, y)) |
| out2 = fn(x, y, _assert_compiled=True) |
| self.assertEqual(out, out2) |
| |
| def test_backward_flag_checks(self): |
| x = Variable(torch.randn(1), requires_grad=True) |
| |
| @torch.jit.compile(nderivs=2) |
| def fn(x): |
| return x * x |
| |
| grad_x, = torch.autograd.grad(fn(x), (x,), create_graph=True) |
| self.assertFalse(fn.has_trace_for(x)) |
| grad_x.backward() |
| self.assertTrue(fn.has_trace_for(x)) |
| |
| with self.assertRaisesRegex(RuntimeError, 'different flags'): |
| fn(x).backward(Variable(torch.ones(1), requires_grad=True)) |
| with self.assertRaisesRegex(RuntimeError, 'different flags'): |
| grad_x, = torch.autograd.grad(fn(x), (x,), create_graph=True) |
| grad_x.backward(Variable(torch.ones(1), requires_grad=True)) |
| |
| # TODO: Test executing this |
| |
| def test_python_ir(self): |
| x = Variable(torch.Tensor([0.4]), requires_grad=True) |
| y = Variable(torch.Tensor([0.7]), requires_grad=True) |
| |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| traced, _ = torch.jit.trace(doit, (x, y)) |
| g = torch._C._jit_get_graph(traced) |
| g2 = torch._C.Graph() |
| g_to_g2 = {} |
| for node in g.inputs(): |
| g_to_g2[node] = g2.addInput() |
| for node in g.nodes(): |
| if node.kind() == "PythonOp": |
| n_ = g2.create(node.pyname(), |
| [g_to_g2[i] for i in node.inputs()]) \ |
| .setType(node.typeOption()) \ |
| .s_("note", "from_pyop") \ |
| .i_("some_value", len(node.scalar_args())) |
| assert(n_.i("some_value") == len(node.scalar_args())) |
| else: |
| n_ = g2.createClone(node, lambda x: g_to_g2[x]) |
| assert(n_.kindOf("Offset") == "i") |
| |
| g_to_g2[node] = g2.appendNode(n_) |
| |
| for node in g.outputs(): |
| g2.registerOutput(g_to_g2[node]) |
| |
| t_node = g2.create("TensorTest").t_("a", torch.ones([2, 2])) |
| assert(t_node.attributeNames() == ["a"]) |
| g2.appendNode(t_node) |
| assert(torch.equal(torch.ones([2, 2]), t_node.t("a"))) |
| self.assertExpected(str(g2)) |
| |
| def test_cpp(self): |
| torch._C._jit_run_cpp_tests() |
| |
| def test_batchnorm(self): |
| x = Variable(torch.randn(2, 2).fill_(1.0), requires_grad=True) |
| trace, _ = torch.jit.trace(nn.BatchNorm2d(2), x) |
| self.assertExpected(str(trace)) |
| |
| @unittest.skip("unrecognized NodeKind: SpatialBN") |
| def test_batchnorm_run_twice(self): |
| @torch.jit.compile(nderivs=0) |
| class MyBatchNorm2d(nn.BatchNorm2d): |
| pass |
| |
| bn = MyBatchNorm2d(1) |
| x = Variable(torch.randn(5, 1)) |
| z = bn(x) |
| z2 = bn(x, _assert_compiled=True) |
| self.assertEqual(z, z2) |
| |
| def test_non_decorator_use_fails(self): |
| MyLSTM = torch.jit.compile(nn.LSTM) |
| self.assertRaisesRegex(TypeError, "class decorator", lambda: MyLSTM(2, 2)) |
| |
| def test_conv(self): |
| x = Variable(torch.randn(20, 16, 50, 40).fill_(1.0), requires_grad=True) |
| trace, _ = torch.jit.trace(nn.Conv2d(16, 13, 3, bias=False), x) |
| self.assertExpected(str(trace)) |
| |
| def test_reuse_function(self): |
| @torch.jit.compile(nderivs=0) |
| def clinear(*args): |
| return F.linear(*args) |
| |
| def cast(x): |
| return x |
| |
| input = Variable(cast(torch.randn(1, 1))) |
| weights = Variable(cast(torch.randn(1, 1))) |
| bias = Variable(cast(torch.randn(1, 1))) |
| |
| # linear AKA addmm without bias is of particular interest |
| # because we allocate a zero-filled new variable when we execute, |
| # and then *fill* it with the result |
| |
| r1 = clinear(clinear(input, weights), weights, _assert_compiled=True) |
| r2 = F.linear(F.linear(input, weights), weights) |
| |
| self.assertEqual(r1, r2) |
| |
| def test_mini_wlm(self): |
| """Exercise null-edge pruning in the tracer.""" |
| |
| @torch.jit.compile |
| class MyModel(nn.Module): |
| def __init__(self): |
| super(MyModel, self).__init__() |
| self.encoder = nn.Embedding(2, 2) |
| |
| def forward(self, input, hidden): |
| emb = self.encoder(input) |
| hidden = hidden.clone() # simulate some RNN operation |
| return emb, hidden |
| |
| model = MyModel() |
| |
| x = Variable(torch.LongTensor([[0, 1], [1, 0]])) |
| y = Variable(torch.FloatTensor([0])) |
| |
| z, _ = model(x, y) |
| z.sum().backward() |
| |
| z, _ = model(x, y, _assert_compiled=True) |
| z.sum().backward() |
| |
| @skipIfNoTorchVision |
| def test_alexnet(self): |
| x = Variable(torch.randn(10, 3, 224, 224).fill_(1.0), requires_grad=True) |
| trace, _ = torch.jit.trace(torchvision.models.AlexNet(), x) |
| self.assertExpected(str(trace)) |
| # NB: Purposely NOT testing protobuf export here |
| |
| if __name__ == '__main__': |
| run_tests() |