| #include "torch/csrc/utils/pybind.h" |
| |
| #include "torch/csrc/jit/python_tracer.h" |
| #include "torch/csrc/jit/tracer.h" |
| #include "torch/csrc/jit/python_ir.h" |
| #include "torch/csrc/jit/python_arg_flatten.h" |
| #include "torch/csrc/jit/export.h" |
| #include "torch/csrc/jit/python_compiled_function.h" |
| #include "torch/csrc/jit/argument_spec.h" |
| #include "torch/csrc/jit/passes/graph_fuser.h" |
| #include "torch/csrc/jit/passes/onnx.h" |
| #include "torch/csrc/jit/passes/dead_code_elimination.h" |
| #include "torch/csrc/jit/passes/common_subexpression_elimination.h" |
| #include "torch/csrc/jit/passes/peephole.h" |
| #include "torch/csrc/jit/passes/canonicalize.h" |
| #include "torch/csrc/jit/passes/onnx/peephole.h" |
| #include "torch/csrc/jit/passes/onnx/fixup_onnx_loop.h" |
| #include "torch/csrc/jit/passes/shape_analysis.h" |
| #include "torch/csrc/jit/graph_executor.h" |
| #include "torch/csrc/jit/script/init.h" |
| #include "torch/csrc/jit/script/python_tree_views.h" |
| |
| |
| namespace torch { namespace jit { |
| |
| namespace { |
| |
| using autograd::variable_list; |
| |
| bool loadPythonClasses() { |
| // Leaving this code here, because it will likely be useful at some point |
| //PyObject *jit_module = PyImport_ImportModule("torch.jit"); |
| //THPUtils_assert(jit_module, "class loader couldn't access " |
| //"torch.jit module"); |
| //PyObject *jit_dict = PyModule_GetDict(jit_module); |
| |
| return true; |
| } |
| |
| // we cannot use the default py:cast<autograd::Variable> because it currently |
| // unwraps the data tensor in the conversion process |
| // TODO: replace with bs type |
| variable_tensor_list createVariableTensorList(py::tuple tuple, size_t reserve_extra_space = 0) { |
| variable_tensor_list result; |
| result.reserve(tuple.size() + reserve_extra_space); |
| for(auto e : tuple) { |
| result.push_back(py::cast<autograd::Variable>(e)); |
| } |
| return result; |
| } |
| |
| } // anonymous namespace |
| |
| extern std::string runJITCPPTests(); |
| |
| void initJITBindings(PyObject *module) { |
| auto m = py::handle(module).cast<py::module>(); |
| |
| py::class_<python::IODescriptor>(m, "IODescriptor"); |
| |
| m.def("_jit_init", loadPythonClasses) |
| .def("_jit_pass_onnx", ToONNX) |
| .def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX) |
| .def("_jit_pass_fuse", FuseGraph) |
| .def("_jit_pass_dce", [](std::shared_ptr<Graph>& g){ |
| return EliminateDeadCode(g); // overload resolution |
| }) |
| .def("_jit_pass_cse", EliminateCommonSubexpression) |
| .def("_jit_pass_peephole", PeepholeOptimize) |
| .def("_jit_pass_canonicalize", [](const std::shared_ptr<Graph>& g) { |
| return Canonicalize(g); |
| }) |
| .def("_jit_pass_lint", LintGraph) |
| .def("_jit_pass_shape_analysis", [](Graph& graph, py::tuple inputs, bool with_grad) { |
| auto tensor_inputs = createVariableTensorList(inputs); |
| PropagateInputShapes(graph, ArgumentSpec(with_grad, tensor_inputs)); |
| }) |
| .def("_jit_run_cpp_tests", runJITCPPTests) |
| .def("_jit_flatten", [](py::handle& obj) { |
| auto res = python::flatten(obj); |
| return std::make_pair(res.vars, res.desc); |
| }) |
| .def("_jit_unflatten", [](autograd::variable_list vars, python::IODescriptor& desc) { |
| return py::reinterpret_steal<py::object>(python::unflatten(vars, desc)); |
| }) |
| .def("_jit_pass_onnx_block", BlockToONNX) |
| .def("_jit_pass_fixup_onnx_loops", FixupONNXLoops); |
| |
| py::class_<GraphExecutor>(m, "GraphExecutor") |
| .def( |
| py::init([](py::function func, |
| variable_list inputs, |
| bool optimize) { |
| size_t num_inputs = inputs.size(); |
| auto graph = tracer::createGraphByTracing(func, std::move(inputs), num_inputs); |
| return GraphExecutor(graph, optimize); |
| }), |
| py::arg("func"), |
| py::arg("inputs"), |
| py::arg("optimize") = true) |
| .def( |
| py::init([](std::shared_ptr<Graph> graph, bool optimize) { |
| return GraphExecutor(std::move(graph), optimize); |
| }), |
| py::arg("graph"), |
| py::arg("optimize") = true) |
| .def_property_readonly("graph", [](GraphExecutor& ge) { |
| return ge.graph(); |
| }) |
| .def("__call__", [](GraphExecutor& ge, py::args args) -> py::object { |
| auto inputs = createVariableTensorList(args); |
| auto outputs = ge.run(std::move(inputs)); |
| // if we don't tell pybind these are variables it chokes on the |
| // conversion. |
| // TODO: fix conversions to be sane and make sure this works. |
| if (outputs.size() == 0) { |
| return py::none(); |
| } else if (outputs.size() == 1) { |
| return py::cast(static_cast<autograd::Variable&>(outputs[0])); |
| } else { |
| py::tuple tuple(outputs.size()); |
| for(size_t i = 0; i < outputs.size(); i++) { |
| tuple[i] = py::cast(static_cast<autograd::Variable&>(outputs[i])); |
| } |
| return tuple; |
| } |
| }); |
| initPythonIRBindings(module); |
| initPythonTracerBindings(module); |
| python::initCompilerMixin(module); |
| script::initTreeViewBindings(module); |
| script::initJitScriptBindings(module); |
| } |
| |
| }} |