blob: 643dfd530352ea8dd84f699d41c308ee467dffc9 [file] [log] [blame]
#include "torch/csrc/utils/pybind.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/jit/python_ir.h"
#include "torch/csrc/jit/python_arg_flatten.h"
#include "torch/csrc/jit/export.h"
#include "torch/csrc/jit/python_compiled_function.h"
#include "torch/csrc/jit/argument_spec.h"
#include "torch/csrc/jit/passes/graph_fuser.h"
#include "torch/csrc/jit/passes/onnx.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
#include "torch/csrc/jit/passes/peephole.h"
#include "torch/csrc/jit/passes/canonicalize.h"
#include "torch/csrc/jit/passes/onnx/peephole.h"
#include "torch/csrc/jit/passes/onnx/fixup_onnx_loop.h"
#include "torch/csrc/jit/passes/shape_analysis.h"
#include "torch/csrc/jit/graph_executor.h"
#include "torch/csrc/jit/script/init.h"
#include "torch/csrc/jit/script/python_tree_views.h"
namespace torch { namespace jit {
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
//PyObject *jit_module = PyImport_ImportModule("torch.jit");
//THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
//PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
// we cannot use the default py:cast<autograd::Variable> because it currently
// unwraps the data tensor in the conversion process
// TODO: replace with bs type
variable_tensor_list createVariableTensorList(py::tuple tuple, size_t reserve_extra_space = 0) {
variable_tensor_list result;
result.reserve(tuple.size() + reserve_extra_space);
for(auto e : tuple) {
result.push_back(py::cast<autograd::Variable>(e));
}
return result;
}
} // anonymous namespace
extern std::string runJITCPPTests();
void initJITBindings(PyObject *module) {
auto m = py::handle(module).cast<py::module>();
py::class_<python::IODescriptor>(m, "IODescriptor");
m.def("_jit_init", loadPythonClasses)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX)
.def("_jit_pass_fuse", FuseGraph)
.def("_jit_pass_dce", [](std::shared_ptr<Graph>& g){
return EliminateDeadCode(g); // overload resolution
})
.def("_jit_pass_cse", EliminateCommonSubexpression)
.def("_jit_pass_peephole", PeepholeOptimize)
.def("_jit_pass_canonicalize", [](const std::shared_ptr<Graph>& g) {
return Canonicalize(g);
})
.def("_jit_pass_lint", LintGraph)
.def("_jit_pass_shape_analysis", [](Graph& graph, py::tuple inputs, bool with_grad) {
auto tensor_inputs = createVariableTensorList(inputs);
PropagateInputShapes(graph, ArgumentSpec(with_grad, tensor_inputs));
})
.def("_jit_run_cpp_tests", runJITCPPTests)
.def("_jit_flatten", [](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def("_jit_unflatten", [](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops);
py::class_<GraphExecutor>(m, "GraphExecutor")
.def(
py::init([](py::function func,
variable_list inputs,
bool optimize) {
size_t num_inputs = inputs.size();
auto graph = tracer::createGraphByTracing(func, std::move(inputs), num_inputs);
return GraphExecutor(graph, optimize);
}),
py::arg("func"),
py::arg("inputs"),
py::arg("optimize") = true)
.def(
py::init([](std::shared_ptr<Graph> graph, bool optimize) {
return GraphExecutor(std::move(graph), optimize);
}),
py::arg("graph"),
py::arg("optimize") = true)
.def_property_readonly("graph", [](GraphExecutor& ge) {
return ge.graph();
})
.def("__call__", [](GraphExecutor& ge, py::args args) -> py::object {
auto inputs = createVariableTensorList(args);
auto outputs = ge.run(std::move(inputs));
// if we don't tell pybind these are variables it chokes on the
// conversion.
// TODO: fix conversions to be sane and make sure this works.
if (outputs.size() == 0) {
return py::none();
} else if (outputs.size() == 1) {
return py::cast(static_cast<autograd::Variable&>(outputs[0]));
} else {
py::tuple tuple(outputs.size());
for(size_t i = 0; i < outputs.size(); i++) {
tuple[i] = py::cast(static_cast<autograd::Variable&>(outputs[i]));
}
return tuple;
}
});
initPythonIRBindings(module);
initPythonTracerBindings(module);
python::initCompilerMixin(module);
script::initTreeViewBindings(module);
script::initJitScriptBindings(module);
}
}}