blob: 6e01b943df6c9862e727679d37e77cca39945c26 [file] [log] [blame]
#pragma once
#include <iostream>
#include <vector>
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/utils/hash.h"
#include "torch/csrc/jit/variable_tensor_list.h"
namespace torch { namespace jit {
// GraphExecutor creates specializations of Graphs for different dimensionalitities
// and types of inputs.
// ArgumentSpec represents one particular specialization.
// It is designed so that it can be created, hashed, and compared quickly
// since it is used along the hot-path of the JIT to check if the code
// we have created is valid for the given inputs.
// TensorInfoPOD is only used internally in ArgumentSpec
// API users should use TensorInfo
struct TensorInfoPOD {
// total size is 64-bit
unsigned type : 8;
unsigned defined : 1;
unsigned requires_grad : 1;
signed device : 22;
uint32_t total_dims; // all TensorInfoPODs are in ArgumentSpec's tensor_info() array.
// total_dims is the total number of dimensions seen so far
// in all previous members of tensor_info(), including this tensor
// 2*total_dims becomes the offset into the sizes_strides list
// for the _next_ tensor in the tensor_info array
// for tensor 0, the offset is always 0
};
static_assert(sizeof(TensorInfoPOD) == sizeof(int64_t),
"TensorInfoPOD must be 64-bit struct for ArgumentSpec encoding to work");
struct TensorInfo;
struct ArgumentSpec {
// note: tensors must always be variables
ArgumentSpec(bool with_grad, const variable_tensor_list & tensors)
: hash_code(0), ntensors(tensors.size()) {
int all_dims = 0;
for(size_t i = 0; i < ntensors; i++) {
all_dims += tensors[i].defined() ? tensors[i].ndimension() : 0;
}
// allocate enough room for all TensorPODs and dimensions
data.resize(ntensors + all_dims*2);
// and reinterpret our data array as these structs
TensorInfoPOD * pods = reinterpret_cast<TensorInfoPOD*>(data.data());
int64_t * next_dim = sizes_strides();
int total_dims = 0;
for(size_t i = 0; i < ntensors; i++) {
const auto & t = tensors[i];
auto & pod = pods[i];
pod.defined = t.defined();
if(t.defined()) {
pod.type = static_cast<unsigned int>(t.type().scalarType());
pod.device = (!t.type().is_cuda()) ? -1 : t.get_device();
pod.requires_grad = with_grad && static_cast<const autograd::Variable&>(t).requires_grad();
total_dims += t.ndimension();
auto sizes = t.sizes();
std::copy(sizes.begin(),sizes.end(), next_dim);
next_dim += sizes.size();
auto strides = t.strides();
std::copy(strides.begin(), strides.end(), next_dim);
next_dim += strides.size();
}
// each POD has a running tally of all dimensions including its own
pod.total_dims = total_dims;
}
// we precompute the hash_code to minimize the time inside of hash
// table operations where we may need to hold a compiler cache lock.
hash_code = hash_combine(0, ntensors);
for(auto d : data) {
hash_code = hash_combine(hash_code, d);
}
}
// equality is fast: check ntensors, and then check the raw array data,
// there are no size/stride indirections
bool operator==(const ArgumentSpec & spec) const {
return ntensors == spec.ntensors && data == spec.data;
}
bool operator!=(const ArgumentSpec & spec) const {
return !(*this == spec);
}
friend struct TensorInfo;
TensorInfo tensorInfo(size_t i) const;
size_t size() const {
return ntensors;
}
size_t hashCode() const {
return hash_code;
}
private:
ArrayRef<TensorInfoPOD> tensor_info() const {
return ArrayRef<TensorInfoPOD>(reinterpret_cast<const TensorInfoPOD*>(data.data()), ntensors);
}
// the start of the sizes_strides information, which comes after the TensorInfoPOD list.
const int64_t* sizes_strides() const {
return data.data() + ntensors;
}
int64_t* sizes_strides() {
return data.data() + ntensors;
}
size_t hash_code; // precomputed on construction
uint32_t ntensors;
// layout is ntensors of TensorPOD (each 64-bit) followed by their size and stride info
// for 3 tensors: [t0POD][t1POD][t2POD][t0 sizes][t0 strides][t1 sizes][t1 strides][t2 sizes][t2 strides]
std::vector<int64_t> data;
};
// public view of compressed TensorInfo
struct TensorInfo {
TensorInfo(const ArgumentSpec & spec, const int i)
: spec(spec), i(i) {}
at::ScalarType type() const {
return at::ScalarType(pod(i).type);
}
bool defined() const {
return pod(i).defined;
}
bool requires_grad() const {
return pod(i).requires_grad;
}
int device() const {
return pod(i).device;
}
int ndimension() const {
// See [valid range], it is always valid to ask for offset for (i + 1)
return (sizes_strides_offset(i + 1) - sizes_strides_offset(i))/2;
}
at::IntList sizes() const {
return at::IntList(spec.sizes_strides() + sizes_strides_offset(i), ndimension());
}
at::IntList strides() const {
int ndim = ndimension();
return at::IntList(spec.sizes_strides() + sizes_strides_offset(i) + ndim, ndim);
}
operator TypePtr() const {
if(!defined())
return DynamicType::get();
return std::make_shared<TensorType>(type(), device(), sizes(), strides());
}
private:
// offsetinto sizes_strides() array where the sizes start for tensor j
// [valid range] valid range is [0, ntensors]
// (i.e. you can ask for the offset at ntensors, which would be the offset of the next tensor if it existed)
int sizes_strides_offset(int j) const {
if(j == 0) return 0;
return 2*pod(j - 1).total_dims;
}
const TensorInfoPOD & pod(int j) const {
return spec.tensor_info().at(j);
}
const ArgumentSpec & spec;
const int i;
};
inline std::ostream & operator<<(std::ostream & out, const TensorInfo & info) {
if(!info.defined()) {
return out << "<undefined>";
}
out << "Tensor(device=" << info.device()
<< ", type=" << toString(info.type())
<< ", requires_grad=" << info.requires_grad()
<< ", sizes=" << info.sizes()
<< ", strides=" << info.strides() << ")";
return out;
}
inline std::ostream& operator<<(std::ostream & out, const ArgumentSpec & spec) {
out << "{";
for(size_t i = 0; i < spec.size(); ++i) {
if (i > 0)
out << ", ";
out << spec.tensorInfo(i);
}
return out;
}
inline TensorInfo ArgumentSpec::tensorInfo(size_t i) const {
return TensorInfo(*this, i);
}
}}
namespace std {
template<>
struct hash<torch::jit::ArgumentSpec> {
std::size_t operator()(const torch::jit::ArgumentSpec & spec) const {
return spec.hashCode();
}
};
}