| from __future__ import annotations |
| |
| import collections |
| import contextlib |
| import enum |
| import functools |
| import inspect |
| import itertools |
| import logging |
| import math |
| import operator |
| import os |
| import platform |
| import shutil |
| import sys |
| import tempfile |
| import textwrap |
| import time |
| import unittest |
| from io import StringIO |
| from typing import ( |
| Any, |
| Callable, |
| Dict, |
| Iterable, |
| List, |
| NamedTuple, |
| Optional, |
| Set, |
| TypeVar, |
| Union, |
| ValuesView, |
| ) |
| from unittest import mock |
| |
| import sympy |
| |
| import torch |
| from torch._dynamo.device_interface import get_interface_for_device |
| from torch.autograd import DeviceType |
| from torch.autograd.profiler_util import EventList |
| from torch.fx.immutable_collections import immutable_list |
| from torch.utils._sympy.functions import CeilDiv, CleanDiv, FloorDiv, ModularIndexing |
| |
| from . import config |
| |
| log = logging.getLogger(__name__) |
| |
| _T = TypeVar("_T") |
| VarRanges = Dict[sympy.Expr, sympy.Expr] |
| |
| |
| def do_bench_using_profiling(fn: Callable[[], Any], warmup=25, rep=100) -> float: |
| """ |
| Returns benchmark results by examining torch profiler events. |
| This could be more accurate as it doesn't count CPU side overhead. |
| However, this also requires manually excluding irrelevant event, e.g. |
| vectorized_elementwise_kernel which is used to fill L2 cache, |
| various CUDA events, etc, so could also be fragile. |
| """ |
| |
| fn() |
| torch.cuda.synchronize() |
| cache = torch.empty(int(256e6 // 4), dtype=torch.int, device="cuda") |
| |
| # Estimate the runtime of the function |
| start_event = torch.cuda.Event(enable_timing=True) |
| end_event = torch.cuda.Event(enable_timing=True) |
| start_event.record() |
| for _ in range(5): |
| cache.zero_() |
| fn() |
| end_event.record() |
| torch.cuda.synchronize() |
| estimate_ms = start_event.elapsed_time(end_event) / 5 |
| |
| # compute number of warmup and repeat |
| n_warmup = max(1, int(warmup / estimate_ms)) |
| n_repeat = max(1, int(rep / estimate_ms)) |
| |
| # Warm-up |
| for _ in range(n_warmup): |
| fn() |
| |
| with torch.profiler.profile( |
| activities=[ |
| torch.profiler.ProfilerActivity.CUDA, |
| ] |
| ) as p: |
| # Benchmark |
| for i in range(n_repeat): |
| # we clear the L2 cache before each run |
| cache.zero_() |
| # record time of `fn` |
| fn() |
| # Record clocks |
| torch.cuda.synchronize() |
| |
| log.debug("raw events") |
| log.debug(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1)) |
| |
| filtered_events = EventList( |
| [event for event in p.events() if event.device_type == DeviceType.CUDA] |
| ) |
| if len(filtered_events) % n_repeat != 0: |
| raise RuntimeError( |
| "Failed to divide all profiling events into #repeat groups. " |
| "#CUDA events: %d, #repeats: %s", |
| len(filtered_events), |
| n_repeat, |
| ) |
| num_event_per_group = len(filtered_events) / n_repeat |
| actual_events = EventList( |
| [ |
| event |
| for i, event in enumerate(filtered_events) |
| if i % num_event_per_group != 0 |
| ] |
| ) |
| actual_events._build_tree() |
| actual_events = actual_events.key_averages() |
| |
| log.debug("profiling time breakdown") |
| log.debug(actual_events.table(row_limit=-1)) |
| |
| res = sum(event.cuda_time for event in actual_events) / 1000.0 |
| log.debug("profiling results: %s ms", res) |
| return res |
| |
| |
| def do_bench(*args, **kwargs): |
| @functools.lru_cache(None) |
| def load_triton(): |
| try: |
| # NB: Lazily load triton, as importing triton is slow |
| # see https://github.com/openai/triton/issues/1599 |
| from triton.testing import do_bench as triton_do_bench |
| except ImportError: |
| raise NotImplementedError("requires Triton") |
| |
| # triton PR https://github.com/openai/triton/pull/1513 change the |
| # quantile fields name from 'percentiles' to 'quantiles' |
| # and change the default value from (0.5, 0.2, 0.8) to None. |
| # This may break inductor since a caller expects a tuple may get a item. |
| # |
| # Add a wrapper to maintain the same behavior for inductor. |
| # Maybe we should have own implementation of this function? |
| return triton_do_bench, ( |
| "quantiles" |
| if inspect.signature(triton_do_bench).parameters.get("quantiles") |
| is not None |
| else "percentiles" |
| ) |
| |
| triton_do_bench, quantile_field_name = load_triton() |
| |
| if quantile_field_name not in kwargs: |
| kwargs[quantile_field_name] = (0.5, 0.2, 0.8) |
| return triton_do_bench(*args, **kwargs)[0] |
| |
| |
| @functools.lru_cache(None) |
| def has_torchvision_roi_align() -> bool: |
| try: |
| from torchvision.ops import roi_align # noqa: F401 |
| |
| return roi_align is not None and hasattr( |
| getattr(torch.ops, "torchvision", None), "roi_align" |
| ) |
| except ImportError: |
| return False |
| |
| |
| def conditional_product(*args): |
| return functools.reduce(operator.mul, [x for x in args if x]) |
| |
| |
| def decode_device(device: Union[Optional[torch.device], str]) -> torch.device: |
| if device is None: |
| return torch.tensor(0.0).device # default device |
| if isinstance(device, str): |
| device = torch.device(device) |
| if device.type != "cpu" and device.index is None: |
| device_interface = get_interface_for_device(device.type) |
| return torch.device(device.type, index=device_interface.Worker.current_device()) |
| return device |
| |
| |
| def sympy_product(it): |
| return functools.reduce(operator.mul, it, sympy.Integer(1)) |
| |
| |
| def sympy_dot(seq1, seq2): |
| assert len(seq1) == len(seq2) |
| return sympy.expand(sum(a * b for a, b in zip(seq1, seq2))) |
| |
| |
| def unique(it: Iterable[_T]) -> ValuesView[_T]: |
| return {id(x): x for x in it}.values() |
| |
| |
| def ceildiv( |
| numer: Union[int, sympy.Expr], denom: Union[int, sympy.Expr] |
| ) -> Union[int, sympy.Expr]: |
| if isinstance(numer, sympy.Expr) or isinstance(denom, sympy.Expr): |
| return CeilDiv(numer, denom) |
| # TODO: There is a bug in a call to this function, to repro: |
| # python benchmarks/dynamo/huggingface.py --inductor -d cuda --accuracy |
| # --amp --only YituTechConvBert --dynamic-shapes |
| assert isinstance(numer, int) and isinstance( |
| denom, int |
| ), f"{numer}: {type(numer)}, {denom}: {type(denom)}" |
| return -(numer // -denom) |
| |
| |
| def next_power_of_2(n: int) -> int: |
| """Return the smallest power of 2 greater than or equal to n""" |
| assert n <= 2**32, "32-bit only" |
| n -= 1 |
| n |= n >> 1 |
| n |= n >> 2 |
| n |= n >> 4 |
| n |= n >> 8 |
| n |= n >> 16 |
| n += 1 |
| return n |
| |
| |
| def convert_shape_to_inductor(lst: List[Union[int, torch.SymInt]]) -> List[sympy.Expr]: |
| """ |
| Gets the shape and stride of a tensor. For non-symbolic tensors, this is |
| trivial. But for symbolic tensors, we need to map from SymIntNode into |
| sympy.Expr. |
| """ |
| return [ |
| i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst |
| ] |
| |
| |
| def convert_shape_to_symint( |
| lst: List[Union[int, sympy.Expr]] |
| ) -> List[Union[int, torch.SymInt]]: |
| """ |
| Takes a list of shapes from Inductor and converts them into symints (or just |
| ints if all shapes are static). |
| """ |
| from .virtualized import V |
| |
| return [ |
| i |
| if isinstance(i, int) |
| else int(i) |
| if isinstance(i, sympy.Integer) |
| else V.graph.sizevars.shape_env.create_symintnode(i, hint=None) |
| for i in lst |
| ] |
| |
| |
| def gen_gm_and_inputs(target, args, kwargs): |
| g = torch.fx.Graph() |
| g_args = [] |
| a_args = [] |
| for n, arg in enumerate(args): |
| if isinstance(arg, torch.Tensor): |
| g_args.append(g.placeholder(f"arg{n}")) |
| a_args.append(arg) |
| else: |
| g_args.append(arg) |
| assert all(not isinstance(x, torch.Tensor) for x in kwargs.values()) |
| node = g.call_function(target, tuple(g_args), kwargs) |
| if ( |
| len(target._schema.returns) == 1 |
| and str(target._schema.returns[0].type) == "Tensor" |
| ): |
| node = (node,) |
| g.output(node) |
| |
| gm = torch.fx.GraphModule({}, g) |
| return gm, a_args |
| |
| |
| def synchronize(device: str = "cuda"): |
| if device == "cpu": |
| return |
| device_interface = get_interface_for_device(device) |
| if device_interface.is_available(): |
| device_interface.synchronize() |
| |
| |
| def timed( |
| model: Callable[..., Any], example_inputs, times: int = 1, device: str = "cuda" |
| ) -> float: |
| synchronize(device) |
| torch.manual_seed(1337) |
| t0 = time.perf_counter() |
| for _ in range(times): |
| result = model(*example_inputs) |
| synchronize(device) |
| t1 = time.perf_counter() |
| # GC the result after timing |
| assert result is not None |
| return t1 - t0 |
| |
| |
| def print_performance( |
| fn, args=(), times=10, repeat=10, baseline=1.0, device: str = "cuda" |
| ): |
| timings = torch.tensor([timed(fn, args, times, device) for _ in range(repeat)]) |
| took = torch.median(timings) / times |
| print(f"{took/baseline:.6f}") |
| return took |
| |
| |
| def precompute_method(obj: Any, method: str): |
| """Replace obj.method() with a new method that returns a precomputed constant.""" |
| result = getattr(obj, method)() |
| setattr(obj, method, lambda: result) |
| |
| |
| def precompute_methods(obj: Any, methods: List[str]): |
| """Replace methods with new methods that returns a precomputed constants.""" |
| for method in methods: |
| precompute_method(obj, method) |
| |
| |
| def cmp(a, b) -> int: |
| return int(a > b) - int(a < b) |
| |
| |
| def pad_listlike(x, size): |
| if len(x) == 1: |
| return type(x)([x[0]]) * size |
| else: |
| return x |
| |
| |
| def cache_on_self(fn): |
| key = f"__{fn.__name__}_cache" |
| |
| @functools.wraps(fn) |
| def wrapper(self): |
| if not hasattr(self, key): |
| setattr(self, key, fn(self)) |
| return getattr(self, key) |
| |
| return wrapper |
| |
| |
| def aggregate_origins(node_schedule): |
| from . import ir |
| |
| if isinstance(node_schedule, list): |
| return functools.reduce( |
| operator.or_, |
| [ |
| node.node.origins |
| for node in node_schedule |
| if hasattr(node, "node") and node.node |
| ], |
| set(), |
| ) |
| elif isinstance(node_schedule, ir.ExternKernel): |
| return node_schedule.origins |
| else: |
| return set() |
| |
| |
| def get_fused_kernel_name(node_schedule, descriptive_names): |
| all_origins = aggregate_origins(node_schedule) |
| if descriptive_names == "original_aten": |
| # Bases the kernel name off of the top-level aten operator (i.e. pre-decompositions) |
| sources = [ |
| origin.meta["original_aten"]._overloadpacket.__name__ |
| for origin in all_origins |
| if origin.op == "call_function" and "original_aten" in origin.meta |
| ] |
| sources = sorted(set(sources)) |
| elif descriptive_names == "torch": |
| # Bases the kernel name off of the top-level "torch" operator (i.e. post-dynamo graph) |
| sources = [] |
| for origin in all_origins: |
| if origin.op == "call_function" and "source_fn_stack" in origin.meta: |
| source_fn = origin.meta["source_fn_stack"][-1] |
| if isinstance(source_fn[1], str): |
| sources.append(source_fn[1]) |
| else: |
| sources.append(source_fn[1].__name__) |
| sources = sorted(set(sources)) |
| elif descriptive_names == "inductor_node": |
| sources = [ |
| origin.name for origin in all_origins if origin.op == "call_function" |
| ] |
| else: |
| raise NotImplementedError |
| sources = sources |
| return "_".join(["fused"] + sources) |
| |
| |
| def get_kernel_metadata(node_schedule, wrapper): |
| all_origins = aggregate_origins(node_schedule) |
| inductor_nodes = [origin for origin in all_origins if origin.op == "call_function"] |
| |
| from_node_dict = collections.defaultdict(list) |
| original_aten_dict = collections.defaultdict(list) |
| for node in inductor_nodes: |
| if "original_aten" in node.meta: |
| key = str(node.meta["original_aten"]._overloadpacket) |
| original_aten_dict[key].append(node.name) |
| if "from_node" in node.meta: |
| key = node.meta["from_node"][0][0] |
| from_node_dict[key].append(node.name) |
| metadata = ( |
| f"{wrapper.comment} Source Nodes: [{', '.join(sorted(from_node_dict.keys()))}], " |
| f"Original ATen: [{', '.join(sorted(original_aten_dict.keys()))}]" |
| ) |
| # trace back to original node here |
| detailed_metadata = [] |
| for original_node, nodes in sorted(from_node_dict.items()): |
| detailed_metadata.append( |
| f"{wrapper.comment} {original_node} => {', '.join(sorted(nodes))}" |
| ) |
| return metadata, "\n".join(detailed_metadata) |
| |
| |
| def dominated_nodes( |
| initial_queue: Iterable[torch.fx.Node], skip_filter=None |
| ) -> Set[torch.fx.Node]: |
| """Returns the set of nodes whose values depend on those within initial_queue""" |
| initial_queue = list(initial_queue) |
| dominated_set = set(initial_queue) |
| |
| while initial_queue: |
| node = initial_queue.pop() |
| for user in node.users: |
| if skip_filter and skip_filter(user): |
| continue |
| if user not in dominated_set: |
| dominated_set.add(user) |
| initial_queue.append(user) |
| |
| return dominated_set |
| |
| |
| def gather_origins(args, kwargs): |
| import itertools |
| |
| from . import ir |
| |
| def is_unrealized_node(n): |
| if isinstance(n, ir.TensorBox): |
| return is_unrealized_node(n.data) |
| if isinstance(n, ir.StorageBox): |
| return is_unrealized_node(n.data) |
| return isinstance(n, ir.IRNode) and isinstance(n, ir.Pointwise) |
| |
| kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)] |
| arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)] |
| return set(itertools.chain(*arg_origins, *kwarg_origins)) |
| |
| |
| def sympy_str(expr: sympy.Expr) -> str: |
| """ |
| Normal sympy str is very slow, this is a lot faster. The result are |
| somewhat worse, as it doesn't do as much simplification. So don't |
| use this for final codegen. |
| """ |
| if isinstance(expr, sympy.Symbol): |
| return expr.name |
| if isinstance(expr, sympy.Add): |
| return " + ".join(map(sympy_str, expr.args)) |
| if isinstance(expr, sympy.Mul): |
| return " * ".join(map(sympy_str, expr.args)) |
| |
| if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv)): |
| return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})" |
| return str(expr) |
| |
| |
| def sympy_symbol(name: str) -> sympy.Symbol: |
| # This should never be used for creating shape/stride symbols, as those |
| # should all be allocated before Inductor. |
| assert name[0] != "s" |
| # NOTE: shape symbols are positive (> 0), but index variables are only |
| # non-negative (>= 0). |
| return sympy.Symbol(name, integer=True, nonnegative=True) |
| |
| |
| def sympy_subs(expr: sympy.Expr, replacements: Dict[Any, Any]) -> sympy.Expr: |
| """ |
| xreplace is faster than subs, but is way more picky |
| """ |
| |
| def promote_strings(key): |
| if isinstance(key, str): |
| return sympy_symbol(key) |
| return key |
| |
| return expr.xreplace( |
| {promote_strings(k): promote_strings(v) for k, v in replacements.items()} |
| ) |
| |
| |
| def free_symbol_startswith(index: sympy.Expr, prefix: str): |
| return any(v.name.startswith(prefix) for v in index.free_symbols) |
| |
| |
| def free_symbol_has(index: sympy.Expr, pattern: str): |
| return any(pattern in v.name for v in index.free_symbols) |
| |
| |
| def has_incompatible_cudagraph_ops(gm): |
| forbidden_set = { |
| "aten._fused_moving_avg_obs_fq_helper.default", |
| "aten._fused_moving_avg_obs_fq_helper_functional.default", |
| "aten.multinomial.default", |
| "fbgemm.dense_to_jagged.default", |
| "fbgemm.jagged_to_padded_dense.default", |
| "run_and_save_rng_state", |
| "run_with_rng_state", |
| "aten._local_scalar_dense", |
| } |
| if torch.are_deterministic_algorithms_enabled(): |
| forbidden_set.update( |
| { |
| "aten._unsafe_index_put.default", |
| "aten.index_put.default", |
| "aten.index_put_.default", |
| "aten.scatter.src", |
| "aten.scatter.reduce", |
| "aten.scatter.value_reduce", |
| "aten.scatter_add_", |
| "aten.scatter_add.default", |
| "aten.scatter_reduce.two", |
| "aten.scatter_reduce_.two", |
| "aten.scatter_reduce.two_out", |
| } |
| ) |
| for node in gm.graph.nodes: |
| if str(node.target) in forbidden_set: |
| return True |
| return False |
| |
| |
| instance_descriptor = collections.namedtuple( |
| "instance_descriptor", |
| ["divisible_by_16", "equal_to_1", "ids_of_folded_args", "divisible_by_8"], |
| defaults=[tuple(), tuple(), tuple(), tuple()], |
| ) |
| |
| |
| @contextlib.contextmanager |
| def fresh_inductor_cache(cache_entries=None): |
| """ |
| Contextmanager that provides a clean tmp cachedir for inductor. |
| |
| Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes |
| generated with this cache instance. |
| """ |
| with tempfile.TemporaryDirectory() as inductor_cache_dir: |
| with mock.patch.dict( |
| os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir} |
| ): |
| triton_cache_dir = os.path.join(inductor_cache_dir, "triton") |
| with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}): |
| yield |
| if isinstance(cache_entries, dict): |
| assert len(cache_entries) == 0, "expected empty cache_entries dict" |
| if os.path.exists(triton_cache_dir): |
| files = os.listdir(triton_cache_dir) |
| cache_entries.update( |
| { |
| f: os.path.getsize(os.path.join(triton_cache_dir, f)) |
| for f in files |
| if ".lock" not in f |
| } |
| ) |
| |
| |
| def argsort(seq) -> List[int]: |
| # preserve original order for equal strides |
| getter = seq.__getitem__ |
| a_r = range(len(seq)) |
| return list(reversed(sorted(a_r, key=getter, reverse=True))) # noqa: C413 |
| |
| |
| @functools.lru_cache(8) |
| def get_dtype_size(dtype): |
| return torch.empty((), dtype=dtype).element_size() |
| |
| |
| class LineContext(NamedTuple): |
| context: Any |
| |
| |
| class IndentedBuffer: |
| tabwidth = 4 |
| |
| def __init__(self, initial_indent=0): |
| self._lines = [] |
| self._indent = initial_indent |
| |
| def getvaluewithlinemap(self) -> tuple[str, list[tuple[int, LineContext]]]: |
| buf = StringIO() |
| p = 1 |
| linemap = [] |
| for line in self._lines: |
| if isinstance(line, DeferredLineBase): |
| line = line() |
| if line is None: |
| continue |
| elif isinstance(line, LineContext): |
| linemap.append((p, line.context)) |
| continue |
| assert isinstance(line, str) |
| buf.write(line) |
| buf.write("\n") |
| p += 1 + line.count("\n") |
| return buf.getvalue(), linemap |
| |
| def getvalue(self) -> str: |
| v, _ = self.getvaluewithlinemap() |
| return v |
| |
| def getrawvalue(self) -> str: |
| buf = StringIO() |
| for line in self._lines: |
| if isinstance(line, DeferredLineBase): |
| line = line() |
| if line is None: |
| continue |
| elif isinstance(line, LineContext): |
| continue |
| assert isinstance(line, str) |
| # backslash implies line continuation |
| if line.endswith("\\"): |
| buf.write(line[:-1]) |
| else: |
| buf.write(line) |
| buf.write("\n") |
| return buf.getvalue() |
| |
| def clear(self): |
| self._lines.clear() |
| |
| def __bool__(self): |
| return bool(self._lines) |
| |
| def prefix(self): |
| return " " * (self._indent * self.tabwidth) |
| |
| def writeline(self, line): |
| if isinstance(line, LineContext): |
| self._lines.append(line) |
| elif isinstance(line, DeferredLineBase): |
| self._lines.append(line.with_prefix(self.prefix())) |
| elif line.strip(): |
| self._lines.append(f"{self.prefix()}{line}") |
| else: |
| self._lines.append("") |
| |
| def writelines(self, lines): |
| for line in lines: |
| self.writeline(line) |
| |
| def indent(self, offset=1): |
| @contextlib.contextmanager |
| def ctx(): |
| self._indent += offset |
| try: |
| yield |
| finally: |
| self._indent -= offset |
| |
| return ctx() |
| |
| def splice(self, other_code, strip=False): |
| if isinstance(other_code, IndentedBuffer): |
| dedent = float("inf") |
| for line in other_code._lines: |
| if not isinstance(line, LineContext) and line: |
| dedent = min(dedent, len(line) - len(line.lstrip())) |
| if math.isinf(dedent): |
| dedent = 0 |
| for line in other_code._lines: |
| if isinstance(line, LineContext): |
| self._lines.append(line) |
| else: |
| IndentedBuffer.writeline(self, line[int(dedent) :]) |
| else: |
| other_code = textwrap.dedent(other_code) |
| if strip: |
| other_code = other_code.lstrip() |
| if not other_code: |
| return |
| other_code = other_code.rstrip() |
| for line in other_code.split("\n"): |
| self.writeline(line) |
| |
| |
| class DeferredLineBase: |
| """A line that can be 'unwritten' at a later time""" |
| |
| def __init__(self, line): |
| if not line.strip(): |
| line = "" |
| self.line = line |
| |
| def __call__(self) -> Optional[str]: |
| """Returns either self.line or None to indicate the line has been 'unwritten'""" |
| raise NotImplementedError() |
| |
| def _new_line(self, line: str) -> DeferredLineBase: |
| """Returns a new deferred line with the same condition""" |
| raise NotImplementedError() |
| |
| def with_prefix(self, prefix): |
| return self._new_line(f"{prefix}{self.line}") |
| |
| def lstrip(self): |
| return self._new_line(self.line.lstrip()) |
| |
| def __getitem__(self, index): |
| return self._new_line(self.line[index]) |
| |
| def __bool__(self): |
| return bool(self.line) |
| |
| def __len__(self): |
| return len(self.line) |
| |
| |
| @functools.lru_cache(None) |
| def is_big_gpu(index): |
| sms = torch.cuda.get_device_properties(index).multi_processor_count |
| if sms < 80: # V100 |
| log.warning("not enough SMs to use max_autotune_gemm mode") |
| return False |
| return True |
| |
| |
| def use_max_autotune() -> bool: |
| return ( |
| config.max_autotune or config.max_autotune_gemm or config.search_autotune_cache |
| ) |
| |
| |
| def _use_template_for_cuda(layout, allowed_layout_dtypes: List[torch.dtype]) -> bool: |
| return ( |
| use_max_autotune() |
| and layout.device.type == "cuda" |
| and layout.dtype in allowed_layout_dtypes |
| and is_big_gpu(layout.device.index or 0) |
| ) |
| |
| |
| def _use_autotune_backend(backend: str) -> bool: |
| return backend.upper() in [ |
| x.strip() for x in config.max_autotune_gemm_backends.upper().split(",") |
| ] |
| |
| |
| def use_triton_template(layout, *, enable_int32=False): |
| layout_dtypes = [torch.float16, torch.bfloat16, torch.float32] |
| if enable_int32: |
| layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32] |
| return _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend( |
| "TRITON" |
| ) |
| |
| |
| def use_cutlass_template(layout): |
| from .codegen.cuda.cutlass_utils import try_import_cutlass |
| |
| layout_dtypes = [torch.float16, torch.bfloat16, torch.float32] |
| res = _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend( |
| "CUTLASS" |
| ) |
| |
| if res: |
| if not try_import_cutlass(): |
| log.warning( |
| "Failed to import CUTLASS lib. Please check whether " |
| "_inductor.config.cuda.cutlass_dir is set correctly. " |
| "Skipping CUTLASS backend for now." |
| ) |
| return False |
| return res |
| |
| |
| def use_aten_gemm_kernels(): |
| return not use_max_autotune() or _use_autotune_backend("ATEN") |
| |
| |
| class DebugDirManager: |
| counter = itertools.count(0) |
| |
| def __init__(self): |
| self.id = next(DebugDirManager.counter) |
| self.prev_debug_name = None |
| |
| def __enter__(self): |
| self.prev_debug_name = torch._dynamo.config.debug_dir_root |
| self.new_name = f"{self.prev_debug_name}_tmp_{self.id}" |
| torch._dynamo.config.debug_dir_root = self.new_name |
| |
| def __exit__(self, *args): |
| shutil.rmtree(self.new_name) |
| torch._dynamo.config.debug_dir_root = self.prev_debug_name |
| |
| |
| def run_and_get_code(fn, *args, **kwargs): |
| from .graph import GraphLowering |
| |
| compile_to_module = GraphLowering.compile_to_module |
| source_codes = [] |
| |
| def patched_compile_to_module(self): |
| mod = compile_to_module(self) |
| with open(mod.__file__) as f: |
| source_codes.append(f.read()) |
| return mod |
| |
| with mock.patch.object( |
| GraphLowering, "compile_to_module", patched_compile_to_module |
| ): |
| torch._dynamo.reset() |
| result = fn(*args, **kwargs) |
| return result, source_codes |
| |
| |
| def run_and_get_triton_code(fn, *args, **kwargs): |
| _, source_codes = run_and_get_code(fn, *args, **kwargs) |
| # Can have two outputs if backwards was eagerly compiled |
| assert ( |
| 1 <= len(source_codes) <= 2 |
| ), f"expected one or two code outputs got {len(source_codes)}" |
| return source_codes[0] |
| |
| |
| @contextlib.contextmanager |
| def override_lowering(aten_op, override_fn): |
| """ |
| Override the lowering of aten_op with overide_fn. |
| The first argument of override_fn is the original lowering fn. |
| """ |
| from torch._inductor import lowering |
| |
| orig_fn = lowering.lowerings[aten_op] |
| try: |
| lowering.lowerings[aten_op] = functools.partial(override_fn, orig_fn) |
| yield |
| finally: |
| lowering.lowerings[aten_op] = orig_fn |
| |
| |
| def add_scheduler_init_hook(pre_fn, post_fn=None): |
| """ |
| Add hook functions to be called at the beginning and end of Scheduler.__init__. |
| Used for unit tests. |
| """ |
| from torch._inductor.scheduler import Scheduler |
| |
| orig_fn = Scheduler.__init__ |
| |
| def wrapper(scheduler, nodes): |
| pre_fn(scheduler, nodes) |
| out = orig_fn(scheduler, nodes) |
| if post_fn: |
| post_fn(scheduler, nodes) |
| return out |
| |
| return unittest.mock.patch.object(Scheduler, "__init__", wrapper) |
| |
| |
| def developer_warning(msg): |
| """ |
| Warnings that will be actionable for PyTorch developers, but not |
| end users. Allows us to easily disable them in stable releases but |
| keep them on for nightly builds. |
| """ |
| if config.developer_warnings: |
| log.warning(msg) |
| else: |
| log.info(msg) |
| |
| |
| def get_num_bytes(*args: torch.Tensor, num_in_out_args: int = 0) -> int: |
| """ |
| Return the total number of bytes the arguments of tensor type takes. |
| |
| For in/out args, tensor sizes are counted twice: once for reading and |
| once for writing. |
| |
| The first num_in_out_args arguments are in out tensors. |
| """ |
| return sum( |
| arg.numel() * arg.element_size() * (1 + int(i < num_in_out_args)) |
| for i, arg in enumerate(args) |
| if isinstance(arg, torch.Tensor) |
| ) |
| |
| |
| def create_bandwidth_info_str(ms, num_gb, gb_per_s, prefix="", suffix=""): |
| info_str = f"{prefix}{ms:.3f}ms \t{num_gb:.3f} GB \t {gb_per_s:7.2f}GB/s{suffix}" |
| try: |
| import colorama # type: ignore[import] |
| |
| if ms > 0.012 and gb_per_s < 650: |
| info_str = colorama.Fore.RED + info_str + colorama.Fore.RESET |
| except ImportError: |
| log.warning("Colorama is not installed. Install it if you want colored output") |
| |
| return info_str |
| |
| |
| def get_benchmark_name(): |
| """ |
| An experimental API used only when config.benchmark_kernel is true. |
| |
| The benchmark name is only available at codegen time. So we can not |
| directly call it in benchmark_all_kernels which is run after codegen. |
| |
| The function assumes the argument after --only is the benchmark name. |
| It works for torchbench.py/hugginface.py/timm_models.py. But for ad-hoc |
| scripts, this function may return None. |
| |
| There are 2 flavors of --only argument we need handle: |
| 1. --only model_name |
| 2. --only=model_name |
| """ |
| try: |
| idx = sys.argv.index("--only") |
| if ( |
| idx + 1 < len(sys.argv) |
| and len(sys.argv[idx + 1]) > 0 |
| and sys.argv[idx + 1][0] != "-" |
| ): |
| return sys.argv[idx + 1] |
| except ValueError: |
| pass |
| |
| for arg in sys.argv: |
| if arg.startswith("--only="): |
| return arg[len("--only=") :] |
| |
| |
| def is_ones(items): |
| return all(x == 1 for x in items) |
| |
| |
| def is_zeros(items): |
| return all(x == 0 for x in items) |
| |
| |
| def is_cpu_device(inputs): |
| return all( |
| item.device == torch.device("cpu") |
| for item in inputs |
| if isinstance(item, torch.Tensor) |
| ) |
| |
| |
| def get_sympy_Expr_dtype(val: sympy.Expr) -> torch.dtype: |
| assert isinstance( |
| val, sympy.Expr |
| ), "only support sympy.Expr as input to get_sympy_Expr_dtype" |
| if val.is_integer: |
| return torch.int64 |
| else: |
| return torch.float64 |
| |
| |
| @contextlib.contextmanager |
| def maybe_profile(should_profile, *args, **kwargs): |
| if should_profile: |
| with torch.profiler.profile(*args, **kwargs) as p: |
| yield p |
| else: |
| yield |
| |
| |
| def triton_config_to_hashable(cfg): |
| """ |
| Convert triton config to a tuple that can uniquely identify it. We can use |
| the return value as a dictionary key. |
| """ |
| items = sorted(cfg.kwargs.items()) |
| items.append(("num_warps", cfg.num_warps)) |
| items.append(("num_stages", cfg.num_stages)) |
| return tuple(items) |
| |
| |
| HAS_COLORAMA = True |
| try: |
| import colorama |
| except ImportError: |
| HAS_COLORAMA = False |
| |
| |
| def _color_text(msg, color): |
| if not HAS_COLORAMA: |
| return msg |
| |
| return getattr(colorama.Fore, color.upper()) + msg + colorama.Fore.RESET |
| |
| |
| def green_text(msg): |
| return _color_text(msg, "green") |
| |
| |
| def yellow_text(msg): |
| return _color_text(msg, "yellow") |
| |
| |
| def red_text(msg): |
| return _color_text(msg, "red") |
| |
| |
| def blue_text(msg): |
| return _color_text(msg, "blue") |
| |
| |
| @functools.lru_cache(None) |
| def python_type_to_schema_type(): |
| from . import ir |
| |
| PYTHON_TYPE_TO_SCHEMA_TYPE = { |
| torch.dtype: "int", |
| torch.device: "Device", |
| bool: "bool", |
| float: "float", |
| ir.TensorBox: "Tensor", |
| } |
| return PYTHON_TYPE_TO_SCHEMA_TYPE |
| |
| |
| def may_get_optional_schema_type(schema_type, is_optional_arg): |
| return f"Optional[{schema_type}]" if is_optional_arg else schema_type |
| |
| |
| def type_match(arg, arg_type, is_optional_arg): |
| if isinstance(arg, immutable_list): |
| if all( |
| isinstance(x, int) or (isinstance(x, sympy.Symbol) and x.is_integer) |
| for x in arg |
| ): |
| may_optional_schema_type = may_get_optional_schema_type( |
| "List[int]", is_optional_arg |
| ) |
| return may_optional_schema_type == str(arg_type) |
| else: |
| # TODO: add support here |
| return False |
| |
| if arg.__class__ in python_type_to_schema_type(): |
| schema_type = python_type_to_schema_type()[arg.__class__] |
| may_optional_schema_type = may_get_optional_schema_type( |
| schema_type, is_optional_arg |
| ) |
| return may_optional_schema_type == str(arg_type) |
| |
| # TODO: add support here |
| return False |
| |
| |
| # torch/csrc/utils/python_arg_parser.cpp:FunctionSignature::parse |
| def schema_match(schema, args, kwargs): |
| min_args = 0 |
| max_pos_args = 0 |
| for argument in schema.arguments: |
| if not argument.has_default_value(): |
| min_args += 1 |
| if not argument.kwarg_only: |
| max_pos_args += 1 |
| |
| nargs = len(args) |
| remaining_kwargs = len(kwargs) |
| arg_pos = 0 |
| |
| def args_error_message(nargs, max_pos_args, min_args): |
| if min_args != max_pos_args: |
| return f"takes from {min_args} to {max_pos_args} positional arguments but {nargs} were given" |
| else: |
| return f"takes {max_pos_args} positional arguments but {nargs} were given" |
| |
| def is_optional(arg): |
| return "Optional" in str(arg.type) |
| |
| def allow_none(arg): |
| return is_optional(arg) or arg.has_default_value() |
| |
| assert len(args) <= max_pos_args, args_error_message( |
| len(args), max_pos_args, min_args |
| ) |
| |
| for argument in schema.arguments: |
| obj = None |
| is_kwd = False |
| if arg_pos < nargs: |
| if argument.kwarg_only: |
| return False |
| obj = args[arg_pos] |
| elif kwargs: |
| if argument.name in kwargs: |
| obj = kwargs[argument.name] |
| is_kwd = True |
| |
| if obj is None and not allow_none(argument): |
| return False |
| |
| if obj is not None: |
| expected_type = argument.type |
| if not type_match(obj, expected_type, is_optional(argument)): |
| return False |
| |
| if not is_kwd: |
| arg_pos += 1 |
| elif (obj is None and is_optional(argument)) or obj is not None: |
| remaining_kwargs -= 1 |
| |
| if remaining_kwargs > 0: |
| return False |
| |
| return True |
| |
| |
| def try_find_schema(schemas, args, kwargs): |
| for schema in schemas: |
| if schema_match(schema, args, kwargs): |
| return schema |
| |
| return None |
| |
| |
| def get_device_tflops(dtype): |
| from triton.testing import get_max_simd_tflops, get_max_tensorcore_tflops |
| |
| assert dtype in (torch.float16, torch.bfloat16, torch.float32) |
| if dtype in (torch.float16, torch.bfloat16): |
| return get_max_tensorcore_tflops(dtype) |
| |
| if torch.backends.cuda.matmul.allow_tf32: |
| return get_max_tensorcore_tflops(torch.float32) |
| else: |
| return get_max_simd_tflops(torch.float32) |
| |
| |
| def get_gpu_dram_gbps(): |
| from triton.testing import get_dram_gbps |
| |
| return get_dram_gbps() |
| |
| |
| def is_welford_reduction(reduction_type): |
| return reduction_type.startswith("welford") |
| |
| |
| def reduction_num_outputs(reduction_type): |
| return 3 if is_welford_reduction(reduction_type) else 1 |
| |
| |
| def is_linux() -> bool: |
| return platform.system() == "Linux" |
| |
| |
| # Placeholder strings used in triton codegen. |
| class Placeholder(enum.Enum): |
| # The placeholder for the actual name of a triton kernel. |
| # e.g. for "def triton_" it would be "triton_" |
| KERNEL_NAME = "KERNEL_NAME" |
| |
| # The descriptive name of the triton kernel; when unique_kernel_names = False, this |
| # placeholder will be replaced with a string with more information. |
| DESCRIPTIVE_NAME = "DESCRIPTIVE_NAME" |
| |
| |
| # A utility function for easier AOTInductor testing |
| aot_inductor_launcher = """ |
| #include <c10/cuda/CUDAStream.h> |
| #include <torch/csrc/inductor/aoti_runtime/interface.h> |
| #include <torch/csrc/inductor/aoti_torch/tensor_converter.h> |
| |
| class RAIIModelContainer { |
| public: |
| RAIIModelContainer() { |
| AOTI_RUNTIME_ERROR_CODE_CHECK(AOTInductorModelContainerCreate( |
| &container_handle, |
| 1 /*num_models*/, |
| false /*is_cpu*/, |
| nullptr /*cubin_dir*/)); |
| } |
| |
| ~RAIIModelContainer() { |
| AOTI_RUNTIME_ERROR_CODE_CHECK( |
| AOTInductorModelContainerDelete(container_handle)); |
| } |
| |
| AOTInductorModelContainerHandle get() const { |
| return container_handle; |
| } |
| |
| private: |
| AOTInductorModelContainerHandle container_handle; |
| }; |
| |
| // Global instance |
| RAIIModelContainer model_container; |
| |
| std::vector<at::Tensor> run(std::vector<at::Tensor>& input_tensors) { |
| auto input_handles = |
| torch::aot_inductor::unsafe_alloc_new_handles_from_tensors(input_tensors); |
| |
| // For outputs, we only allocate a vector to hold returned tensor handles, |
| // not allocating the actual output tensor storage here |
| size_t num_outputs; |
| AOTI_RUNTIME_ERROR_CODE_CHECK( |
| AOTInductorModelContainerGetNumOutputs( |
| model_container.get(), |
| &num_outputs)); |
| std::vector<AtenTensorHandle> output_handles(num_outputs); |
| |
| const auto& cuda_stream = c10::cuda::getCurrentCUDAStream(); |
| const auto stream_id = cuda_stream.stream(); |
| AOTInductorStreamHandle stream_handle = |
| reinterpret_cast<AOTInductorStreamHandle>(stream_id); |
| |
| AOTIProxyExecutorHandle proxy_executor_handle = nullptr; |
| |
| AOTI_RUNTIME_ERROR_CODE_CHECK(AOTInductorModelContainerRun( |
| model_container.get(), |
| input_handles.data(), |
| input_tensors.size(), |
| output_handles.data(), |
| output_handles.size(), |
| stream_handle, |
| proxy_executor_handle)); |
| |
| return torch::aot_inductor::alloc_tensors_by_stealing_from_handles( |
| output_handles.data(), output_handles.size()); |
| } |
| """ |