blob: 4672d535ef5d9a205951816c32c510e3d18a2221 [file] [log] [blame]
#include "torch/csrc/autograd/python_function.h"
#include "torch/csrc/python_headers.h"
#include <structmember.h>
#include <unordered_map>
#include <unordered_set>
#include <exception>
#include <ATen/ATen.h>
#include "THP.h"
#include "torch/csrc/autograd/grad_mode.h"
#include "torch/csrc/autograd/functions/accumulate_grad.h"
#include "torch/csrc/autograd/functions/basic_ops.h"
#include "torch/csrc/autograd/functions/utils.h"
#include "torch/csrc/autograd/python_cpp_function.h"
#include "torch/csrc/autograd/python_hook.h"
#include "torch/csrc/autograd/saved_variable.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/utils/auto_gpu.h"
#include "torch/csrc/Exceptions.h"
using namespace torch;
using namespace torch::autograd;
using namespace torch::jit;
using at::Tensor;
PyObject *THPFunctionClass = nullptr;
#define THPFunction_assert(condition, ...) \
if (!(condition)) { THPUtils_setError(__VA_ARGS__); throw python_error(); }
namespace torch { namespace autograd {
VariableInfo::VariableInfo(const Variable& var)
: type(&var.type())
, device(-1)
, size(var.sizes())
, requires_grad(var.requires_grad()) {
if (var.type().is_cuda()) {
device = var.get_device();
}
}
Variable VariableInfo::zeros(AutoGPU& gpu_guard) const {
gpu_guard.setDevice(device);
return at::zeros(*type, size);
}
auto PyFunction::legacy_apply(const variable_list& inputs) -> variable_list {
AutoGIL gil;
THPObjectPtr pyInputs(PyTuple_New(inputs.size()));
if (!pyInputs) throw python_error();
for (size_t i = 0; i != inputs.size(); ++i) {
PyTuple_SET_ITEM(pyInputs.get(), i, THPVariable_Wrap(inputs[i]));
}
THPObjectPtr r(PyObject_CallMethod(
obj, "_do_backward", "OO", pyInputs.get(), Py_True));
if (!r) throw python_error();
auto num_outputs = PyTuple_GET_SIZE(r.get());
tensor_list tensor_results(num_outputs);
for (int i = 0; i != num_outputs; ++i) {
PyObject* obj = PyTuple_GET_ITEM(r.get(), i);
if (obj != Py_None) {
if (!THPVariable_Check(obj)) {
std::string msg("expected Variable (got '");
msg += THPUtils_typename(obj);
msg += "')'";
throw std::runtime_error(msg);
}
tensor_results[i] = ((THPVariable*)obj)->cdata.data();
}
}
// XXX: this might get requires_grad wrong - there's no way to figure out
// if _do_backward didn't use ctx.saved_tensors and as a result some
// Variables might require grad, even if no args do. Unfortunately, this
// leads to unexpected error messages ("no nodes require computing gradients"),
// but I don't have a better idea. These functions would raise an error
// in backward anyway.
return wrap_outputs(
inputs,
std::move(tensor_results),
[this](edge_list&& next_edges) {
return std::make_shared<Error>(
name() + " is not differentiable twice", std::move(next_edges));
});
}
// NOTE: this function is written in a way that assumes it's only called for backward;
// it's used by engine.cpp. This is responsible for forwarding a call from
// C++'s Function::apply to a Python method "apply".
auto PyFunction::apply(const variable_list& inputs) -> variable_list {
AutoGIL gil;
AutoGPU _gpu_guard(-1);
THPFunction* py_fn = (THPFunction*)obj;
THPObjectPtr _legacy(PyObject_GetAttrString(obj, "_is_legacy"));
if (_legacy == Py_True) {
return legacy_apply(inputs);
}
// Massage a C++ variable_list into a Python arguments tuple
auto num_inputs = inputs.size();
THPObjectPtr pyInputs(PyTuple_New(num_inputs));
if (!pyInputs) throw python_error();
auto& output_info = py_fn->output_info;
for (size_t i = 0; i < num_inputs; ++i) {
PyObject* input;
if (inputs[i].defined()) {
input = THPVariable_Wrap(inputs[i]);
} else {
input = THPVariable_Wrap(output_info[i].zeros(_gpu_guard));
}
if (!input) throw python_error();
PyTuple_SET_ITEM(pyInputs.get(), i, input);
}
THPObjectPtr apply_fn(PyObject_GetAttrString(obj, "apply"));
if (!apply_fn) throw python_error();
THPObjectPtr r(PyObject_CallObject(apply_fn, pyInputs.get()));
if (!r) throw python_error();
ensure_tuple(r);
auto& is_variable_input = py_fn->is_variable_input;
int num_outputs = PyTuple_GET_SIZE(r.get());
int num_forward_inputs = is_variable_input.size();
// Returning too many results is ok, but only as long as they're all None.
// Truncate the result tuple in that case.
if (num_outputs > num_forward_inputs) {
bool all_none = true;
for (int i = num_forward_inputs; i < num_outputs; i++) {
all_none &= PyTuple_GET_ITEM(r.get(), i) == Py_None;
}
if (all_none) {
num_outputs = num_forward_inputs;
r = PyTuple_GetSlice(r.get(), 0, num_forward_inputs);
if (!r) throw python_error();
}
}
// Now the number of gradients should match
if (num_outputs != num_forward_inputs) {
std::string msg("function ");
msg += name() + " returned an incorrect number of gradients (expected ";
msg += std::to_string(num_forward_inputs) + ", got " ;
msg += std::to_string(num_outputs) + ")";
throw std::runtime_error(msg);
}
// Massage the Python results tuple back into a C++ variable_list
variable_list results;
results.reserve(num_outputs);
auto& input_info = py_fn->input_info;
for (int i = 0; i != num_outputs; ++i) {
PyObject* output = PyTuple_GET_ITEM(r.get(), i);
bool was_variable = is_variable_input[i];
if (!was_variable) {
if (output != Py_None) {
std::string msg("function ");
msg += name() + " returned a gradient different than None at position ";
msg += std::to_string(i + 1) + ", but the corresponding forward input was not a Variable";
throw std::runtime_error(msg);
}
continue;
}
if (output == Py_None) {
auto& info = input_info[results.size()];
if (info.requires_grad) {
results.emplace_back(info.zeros(_gpu_guard));
} else {
results.emplace_back();
}
} else {
if (!THPVariable_Check(output)) {
std::string msg("expected Variable or None (got ");
msg += THPUtils_typename(output);
msg += ")";
throw std::runtime_error(msg);
}
results.emplace_back(((THPVariable*)output)->cdata);
}
}
return results;
}
auto PyFunction::is_traceable() -> bool {
AutoGIL gil;
THPObjectPtr forward_class {PyObject_GetAttrString(obj, "_forward_cls")};
if (!forward_class) throw python_error();
THPObjectPtr traceable_py_bool {PyObject_GetAttrString(forward_class, "is_traceable")};
if (!traceable_py_bool) throw python_error();
return traceable_py_bool == Py_True;
}
auto PyFunction::release_variables() -> void {
AutoGIL gil;
auto f = (THPFunction*) obj;
f->saved_variables.clear();
f->has_freed_buffers = 1;
}
auto PyFunction::name() const -> std::string {
AutoGIL gil;
auto f = (THPFunction*) obj;
auto name = std::string(Py_TYPE(f)->tp_name);
THPObjectPtr _legacy(PyObject_GetAttrString(obj, "_is_legacy"));
if (_legacy == Py_True) {
name += "LegacyBackward";
}
return name;
}
auto PyFunction::get_shared_ptr() -> std::shared_ptr<Function> {
return THPFunction_asFunction((THPFunction*)obj);
}
}} // namespace torch::autograd
// Traverse and clear are required for supporting Python's GC cycle handling.
static int THPFunction_traverse(THPFunction *self, visitproc visit, void *arg)
{
for (const auto& hook : self->cdata.pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
for (const auto& hook : self->cdata.post_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
Py_VISIT(self->to_save);
Py_VISIT(self->non_differentiable);
Py_VISIT(self->dirty_tensors);
return 0;
}
static int THPFunction_clear(THPFunction *self)
{
self->cdata.clear_input_metadata();
Py_CLEAR(self->needs_input_grad);
Py_CLEAR(self->to_save);
Py_CLEAR(self->non_differentiable);
Py_CLEAR(self->dirty_tensors);
self->output_info.clear();
self->input_info.clear();
self->saved_variables.clear();
self->is_variable_input.clear();
// Moving the hooks out makes sure to first disassociate them from the
// function, but without destroying any of them. They will get deleted when
// exiting this scope. This is important, because deleting Python objects can
// trigger deletion of other objects, and they can reference this function,
// seeing it in a half-deleted state.
auto pre_hooks = std::move(self->cdata.pre_hooks());
auto post_hooks = std::move(self->cdata.post_hooks());
return 0;
}
static void THPFunction_dealloc(THPFunction* self)
{
PyObject_GC_UnTrack(self);
THPFunction_clear(self);
self->cdata.~PyFunction();
self->output_info.~vector();
self->input_info.~vector();
self->saved_variables.~vector();
self->is_variable_input.~vector();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject *THPFunction_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
PyObject* obj = type->tp_alloc(type, 0);
if (!obj) return nullptr;
// Python zero-initializes the object memory, so there's no need to initialize
// most fields
THPFunction* self = (THPFunction*)obj;
new (&self->cdata) PyFunction(obj);
new (&self->output_info) std::vector<VariableInfo>();
new (&self->input_info) std::vector<VariableInfo>();
new (&self->saved_variables) std::vector<SavedVariable>();
new (&self->is_variable_input) std::vector<bool>();
return obj;
}
////////////////////////////////////////////////////////////////////////////////
// Forward
////////////////////////////////////////////////////////////////////////////////
using t2var_type = std::unordered_map<PyObject *, THPVariable *>;
// Bump the counters of all recorded dirty input tensors, adding each of them
// into dirty_inputs. Also does some sanity checking.
static std::vector<PyObject*> _mark_dirty(THPFunction *self)
{
// Increase versions of modified tensors
std::vector<PyObject*> dirty_inputs;
if (!self->dirty_tensors) return dirty_inputs;
THPFunction_assert(PyTuple_Check(self->dirty_tensors), "autograd "
"internal error: dirty_tensors attribute is expected to be a tuple "
"but is %s", THPUtils_typename(self->dirty_tensors));
Py_ssize_t num_dirty = PyTuple_GET_SIZE(self->dirty_tensors);
for (int i = 0; i < num_dirty; i++) {
PyObject *obj = PyTuple_GET_ITEM(self->dirty_tensors, i);
THPFunction_assert(THPVariable_Check(obj), "mark_dirty can "
"only accept variables, but argument %d is of type %s", i,
THPUtils_typename(obj));
dirty_inputs.push_back(obj);
auto variable = (THPVariable*)obj;
variable->cdata.bump_version();
}
// We're not going to ever need this so let's remove references now
Py_CLEAR(self->dirty_tensors);
return dirty_inputs;
}
static std::unordered_set<PyObject*> _parse_non_differentiable(THPFunction *self);
// Given a Python tuple of raw output tensors (raw_output), set each of
// the corresponding entries in a different Python tuple (outputs) with
// these tensors wrapped with variables. We save the gradient function (self)
// to the variable if the output requires grad.
//
// There is a considerable amount of complexity to handle if the operation
// that produced these output tensors is inplace. A mapping of *input*
// tensors to variables (t2var) is used to test if this occurred, and
// the set of dirty tensors (dirty_inputs) is used to figure out what to
// do in this case. After this method is run, t2var is extended with
// mappings for output tensors as well.
static void _wrap_outputs(THPFunction *self,
PyObject* inputs_tuple, PyObject *raw_output, PyObject *outputs, bool is_executable)
{
auto cdata = is_executable ? THPFunction_asFunction(self) : nullptr;
Py_ssize_t num_outputs = PyTuple_GET_SIZE(raw_output);
if (is_executable) {
self->output_info.clear();
self->output_info.reserve(num_outputs);
}
std::unordered_set<PyObject*> inputs;
int num_inputs = PyTuple_GET_SIZE(inputs_tuple);
for (int i = 0; i < num_inputs; i++) {
inputs.emplace(PyTuple_GET_ITEM(inputs_tuple, i));
}
auto non_differentiable = _parse_non_differentiable(self);
auto dirty_inputs = _mark_dirty(self);
auto as_variable = [&](PyObject* obj, int i) -> Variable {
if (THPVariable_Check(obj)) {
return ((THPVariable*)obj)->cdata;
}
throw TypeError("%s.forward: expected Variable (got %s) for return value %d",
Py_TYPE(self)->tp_name, Py_TYPE(obj)->tp_name, i);
};
// Sets the grad_fn and output_nr of an output Variable.
auto set_history = [&](Variable& var, uint32_t output_nr, bool is_input, bool is_modified,
bool is_differentiable) {
if (!is_differentiable) {
if (!var.requires_grad()) {
return;
}
// NB: we don't support returning non-differentiable views that could require grad
if (var.is_view()) {
throw std::runtime_error("Returning Variables sharing storage with other Variables "
"that require grad is not supported in Python functions. "
"Please submit a feature request if you hit this error.");
}
// Return detached aliases of inputs, instead of changing their requires_grad
// property.
if (is_input) {
var = var.detach();
} else {
var.detach_();
}
} else if (is_modified) {
if (var.is_leaf() && var.requires_grad()) {
throw std::runtime_error("a leaf Variable that requires grad has been used in an in-place operation.");
}
// If the input was modified, transplant the grad_fn in the graph:
// grad_fn <- variable <- self ==> grad_fn <- self <- variable
var.grad().reset();
var.clear_hooks();
if (auto grad_acc_fn = var.try_get_grad_accumulator()) {
auto grad_acc = dynamic_cast<AccumulateGrad*>(grad_acc_fn.get());
grad_acc->variable.reset();
}
if (cdata) {
var.rebase_history({cdata, output_nr});
}
} else if (is_input) {
// An input has been returned, but it wasn't modified. Return it as a view
// so that we can attach a new grad_fn to the Variable.
var = var.view_as(var);
var.set_gradient_edge({cdata, output_nr});
} else if (cdata) {
var.set_gradient_edge({cdata, output_nr});
}
};
for (int i = 0; i < num_outputs; i++) {
PyObject* obj = PyTuple_GET_ITEM(raw_output, i);
bool is_input = inputs.count(obj) > 0;
bool is_modified = std::find(dirty_inputs.begin(), dirty_inputs.end(), obj) != dirty_inputs.end();
bool is_differentiable = is_executable && non_differentiable.count(obj) == 0;
// Note that output Variables may be repeated. In that case, the last call
// to set_history wins.
auto var = as_variable(obj, i);
if (cdata) {
auto output_nr = cdata->add_input_metadata(var.type(), var.sizes());
TORCH_ASSERT(i == (int)output_nr);
}
set_history(var, i, is_input, is_modified, is_differentiable);
if (is_executable) {
self->output_info.emplace_back(var);
}
PyTuple_SET_ITEM(outputs, i, THPVariable_Wrap(var));
}
}
// Save any variables that requested by to_save
static void _save_variables(THPFunction* self)
{
if (!self->to_save) return;
THPFunction_assert(PyTuple_Check(self->to_save), "autograd internal "
"error: to_save attribute is expected to be a tuple but is %s",
THPUtils_typename(self->to_save));
Py_ssize_t num_saved = PyTuple_GET_SIZE(self->to_save);
self->saved_variables.clear();
self->saved_variables.reserve(num_saved);
auto cdata_ptr = &self->cdata;
for (int i = 0; i < num_saved; i++) {
PyObject *obj = PyTuple_GET_ITEM(self->to_save, i);
if (obj == Py_None) {
self->saved_variables.emplace_back();
continue;
} else if (THPVariable_Check(obj)) {
auto variable = (THPVariable*)obj;
bool is_output = variable->cdata.grad_fn().get() == cdata_ptr;
self->saved_variables.emplace_back(variable->cdata, is_output);
} else {
throw TypeError(
"save_for_backward can only save variables, but argument %d is of "
"type %s", i, Py_TYPE(obj)->tp_name);
}
}
// Free .to_save
Py_CLEAR(self->to_save);
}
// Mark requires_grad = 0 on non-differentiable variables (as per non_differentiable)
static std::unordered_set<PyObject*>
_parse_non_differentiable(THPFunction *self)
{
std::unordered_set<PyObject*> set;
if (!self->non_differentiable) return set;
THPFunction_assert(PyTuple_Check(self->non_differentiable), "autograd "
"internal error: non_differentiable attribute is expected to be a "
"tuple but is %s", THPUtils_typename(self->non_differentiable));
Py_ssize_t num_nondiff = PyTuple_GET_SIZE(self->non_differentiable);
set.reserve(num_nondiff);
for (int i = 0; i < num_nondiff; i++) {
PyObject *t = PyTuple_GET_ITEM(self->non_differentiable, i);
THPFunction_assert(THPVariable_Check(t), "mark_non_differentiable "
"only accepts variable arguments, but got %s", THPUtils_typename(t));
set.insert(t);
}
Py_CLEAR(self->non_differentiable);
return set;
}
struct UnpackedInput {
THPObjectPtr input_tuple;
variable_list input_vars;
};
struct InputFlags {
bool is_executable = false;
edge_list next_edges;
THPObjectPtr needs_input_grad;
std::vector<bool> is_variable_input;
};
template<bool enforce_variables>
std::pair<UnpackedInput, InputFlags> unpack_input(PyObject *args) {
UnpackedInput unpacked;
InputFlags flags;
auto num_args = PyTuple_GET_SIZE(args);
unpacked.input_tuple = PyTuple_New(num_args);
flags.needs_input_grad = PyTuple_New(num_args);
for (int i = 0; i < num_args; i++) {
PyObject *arg = PyTuple_GET_ITEM(args, i);
bool is_variable = THPVariable_Check(arg);
flags.is_variable_input.push_back(is_variable);
if (!is_variable) {
// TODO: remove this code path once Variable and Tensor are merged in Python
if (enforce_variables) {
THPUtils_setError("expected a Variable argument, but got %s",
THPUtils_typename(arg));
throw python_error();
}
Py_INCREF(Py_False);
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, Py_False);
} else {
THPVariable* variable = (THPVariable*)arg;
unpacked.input_vars.push_back(variable->cdata);
PyObject* needs_grad = variable->cdata.requires_grad() ? Py_True : Py_False;
Py_INCREF(needs_grad);
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, needs_grad);
}
Py_INCREF(arg);
PyTuple_SET_ITEM(unpacked.input_tuple.get(), i, arg);
}
flags.is_executable = GradMode::is_enabled() && any_variable_requires_grad(unpacked.input_vars);
flags.next_edges = collect_next_edges(unpacked.input_vars);
return std::make_pair(std::move(unpacked), std::move(flags));
}
static void _assert_not_tracing(const char* name, const variable_list& input_vars) {
if (tracer::isTracingVar(input_vars)) {
std::ostringstream oss;
oss << "Attempted to trace " << name;
oss << ", but tracing of legacy functions is not supported";
throw std::runtime_error(oss.str());
}
}
static jit::tracer::PreTraceInfo _trace_pre_record(
PyObject* op_obj,
PyObject *input_objects,
const variable_list& input_vars) {
if (!tracer::isTracingVar(input_vars)) {
return jit::tracer::PreTraceInfo();
}
// Save scalar args and the calling convention
auto num_args = PyTuple_GET_SIZE(input_objects);
pyobj_list scalar_args;
std::string arg_types;
arg_types.reserve(num_args);
scalar_args.reserve(num_args);
for (int i = 0; i < num_args; i++) {
PyObject *arg_object = PyTuple_GET_ITEM(input_objects, i);
if (THPVariable_Check(arg_object)) {
arg_types.push_back('t');
} else {
arg_types.push_back('s');
Py_INCREF(arg_object);
scalar_args.emplace_back(arg_object);
}
}
Py_INCREF(op_obj);
auto pyobj = THPObjectPtr(op_obj);
return jit::tracer::preRecordPythonTrace(
std::move(pyobj),
std::move(arg_types),
input_vars,
std::move(scalar_args));
}
static void _trace_post_record(
const jit::tracer::PreTraceInfo& trace_info,
PyObject* op_obj,
const variable_list& input_vars,
PyObject *output_objects,
bool is_inplace) {
if (!trace_info.state) {
return;
}
// Isolate C variable ptrs in a vector
int num_outputs = PyTuple_GET_SIZE(output_objects);
variable_list output_vars(num_outputs);
for (int i = 0; i < num_outputs; ++i) {
auto var = (THPVariable*)PyTuple_GET_ITEM(output_objects, i);
output_vars[i] = var->cdata;
}
jit::tracer::postRecordTrace(trace_info, output_vars);
auto state_lock = trace_info.state->lock();
trace_info.n->i_(attr::inplace, is_inplace);
}
PyObject* process_outputs(PyObject *op_obj, THPFunction* grad_fn, const UnpackedInput& unpacked,
PyObject *inputs, THPObjectPtr&& raw_output, bool is_executable,
const jit::tracer::PreTraceInfo& trace_info) {
bool unpack_output = ensure_tuple(raw_output);
auto num_outputs = PyTuple_GET_SIZE(raw_output.get());
THPObjectPtr outputs(PyTuple_New(num_outputs));
if (!outputs) throw python_error();
grad_fn->cdata.clear_input_metadata();
// Record type, device, and size information about inputs
if (is_executable) {
grad_fn->input_info.clear();
grad_fn->input_info.reserve(unpacked.input_vars.size());
for (auto& var : unpacked.input_vars) {
grad_fn->input_info.emplace_back(var);
}
}
bool is_inplace = static_cast<bool>(grad_fn->dirty_tensors);
_wrap_outputs(grad_fn, inputs, raw_output, outputs, is_executable);
// NOTE: _trace_post_record has to run before _save_variables, because we need
// to assign traces to outputs before we convert them to SavedVariables.
// On the other hand, it needs to go after _mark_non_differentiable, because
// it might be wraping backwards in Evals, and _mark_non_differentiable uses
// grad_fn pointer equality for error checking.
_trace_post_record(trace_info, op_obj, unpacked.input_vars, outputs, is_inplace);
if (is_executable) {
_save_variables(grad_fn);
} else {
// Remove unnecessary attributes
Py_XDECREF(grad_fn->to_save);
grad_fn->to_save = nullptr;
Py_XDECREF(grad_fn->non_differentiable);
grad_fn->non_differentiable = nullptr;
}
// Unpack the output, unless .forward() returned a tuple
if (unpack_output) {
PyObject *output = PyTuple_GET_ITEM(outputs.get(), 0);
Py_INCREF(output);
return output;
}
return outputs.release();
}
// Legacy codepath
PyObject *THPFunction_do_forward(THPFunction *self, PyObject *_inputs)
{
HANDLE_TH_ERRORS
torch::autograd::profiler::RecordFunction record(Py_TYPE(self)->tp_name);
auto info_pair = unpack_input<true>(_inputs);
auto& unpacked_input = info_pair.first;
auto& input_info = info_pair.second;
bool is_executable = input_info.is_executable;
self->cdata.set_next_edges(std::move(input_info.next_edges));
self->needs_input_grad = input_info.needs_input_grad.release();
// We don't support tracing in the legacy code path
_assert_not_tracing(Py_TYPE(self)->tp_name, unpacked_input.input_vars);
// Now we're ready to call a forward (implemented in Python)
THPObjectPtr raw_output;
{
AutoGradMode grad_mode(false);
THPObjectPtr forward_fn(PyObject_GetAttrString((PyObject*)self, "forward"));
if (!forward_fn) return nullptr;
raw_output = PyObject_CallObject(forward_fn, unpacked_input.input_tuple);
if (!raw_output) return nullptr;
}
return process_outputs(nullptr, self, unpacked_input, _inputs, std::move(raw_output),
is_executable, jit::tracer::PreTraceInfo());
END_HANDLE_TH_ERRORS
}
PyObject *THPFunction_apply(PyObject *cls, PyObject *inputs)
{
HANDLE_TH_ERRORS
torch::autograd::profiler::RecordFunction record(((PyTypeObject*)cls)->tp_name);
THPObjectPtr backward_cls(PyObject_GetAttrString(cls, "_backward_cls"));
if (!backward_cls) return nullptr;
THPObjectPtr ctx_obj(PyObject_CallFunctionObjArgs(backward_cls, nullptr));
if (!ctx_obj) return nullptr;
THPFunction* ctx = (THPFunction*)ctx_obj.get();
// Prepare inputs and allocate context (grad fn)
auto info_pair = unpack_input<false>(inputs);
UnpackedInput& unpacked_input = info_pair.first;
InputFlags& input_info = info_pair.second;
// Record input nodes if tracing
auto trace_info = _trace_pre_record(cls, inputs, unpacked_input.input_vars);
if (trace_info.state) {
// TODO: ezyang suggests this is unused and can be removed
ctx->is_traced = true;
}
// Initialize backward function (and ctx)
bool is_executable = input_info.is_executable;
ctx->cdata.set_next_edges(std::move(input_info.next_edges));
ctx->needs_input_grad = input_info.needs_input_grad.release();
ctx->is_variable_input = std::move(input_info.is_variable_input);
// Prepend ctx to input_tuple, in preparation for static method call
auto num_args = PyTuple_GET_SIZE(inputs);
THPObjectPtr ctx_input_tuple(PyTuple_New(num_args + 1));
PyTuple_SET_ITEM(ctx_input_tuple.get(), 0, ctx_obj.release());
for (int i = 0; i < num_args; ++i) {
PyObject *arg = PyTuple_GET_ITEM(unpacked_input.input_tuple.get(), i);
Py_INCREF(arg);
PyTuple_SET_ITEM(ctx_input_tuple.get(), i + 1, arg);
}
// Call forward
THPObjectPtr tensor_outputs;
{
AutoGradMode grad_mode(false);
THPObjectPtr forward_fn(PyObject_GetAttrString(cls, "forward"));
if (!forward_fn) return nullptr;
tensor_outputs = PyObject_CallObject(forward_fn, ctx_input_tuple);
if (!tensor_outputs) return nullptr;
}
return process_outputs(cls, ctx, unpacked_input, inputs, std::move(tensor_outputs),
is_executable, trace_info);
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Backward
////////////////////////////////////////////////////////////////////////////////
static void _prepare_grads(THPFunction *self, THPObjectPtr& raw_grads, bool is_grad_output)
{
AutoGPU gpu_guard(-1);
int num_grads = PyTuple_GET_SIZE(raw_grads.get());
// First, check if any of grads is None. If not, there's nothing to do
bool has_none = false;
for (int i = 0; i < num_grads; i++) {
has_none |= PyTuple_GET_ITEM(raw_grads.get(), i) == Py_None;
}
if (!has_none)
return;
THPObjectPtr grads;
grads = PyTuple_New(num_grads);
if (!grads) throw python_error();
// Look for Nones and replace them with new buffers
auto& grads_info = is_grad_output ? self->output_info : self->input_info;
TORCH_ASSERT(grads_info.size() == (size_t)num_grads);
for (int i = 0; i < num_grads; i++) {
PyObject *grad = PyTuple_GET_ITEM(raw_grads.get(), i);
if (grad == Py_None) {
grad = THPVariable_Wrap(grads_info[i].zeros(gpu_guard));
if (!grad) throw python_error();
} else {
Py_INCREF(grad);
}
PyTuple_SET_ITEM(grads.get(), i, grad);
}
raw_grads = grads.release();
}
static void _trim_grad_input(THPFunction *self, THPObjectPtr& grad_input)
{
int num_grads = PyTuple_GET_SIZE(grad_input.get());
const int num_outputs = self->cdata.num_outputs();
if (num_grads > num_outputs) {
// Check that all extra grads are none
bool all_none = true;
for (int i = num_outputs; i < num_grads; i++) {
all_none = (PyTuple_GET_ITEM(grad_input.get(), i) == Py_None);
if (!all_none) break;
}
// If yes, slice the tuple
if (all_none) {
num_grads = num_outputs;
grad_input = PyTuple_GetSlice(grad_input.get(), 0, num_grads);
if (!grad_input) throw python_error();
}
}
}
PyObject * THPFunction_do_backward(THPFunction *self, PyObject *args)
{
try {
Py_ssize_t num_args = args ? PyTuple_GET_SIZE(args) : 0;
THPUtils_assert(num_args == 2, "_do_backward expects exactly two arguments");
PyObject *raw_grad_output = PyTuple_GET_ITEM(args, 0);
PyObject *retain_variables = PyTuple_GET_ITEM(args, 1);
if (!PyTuple_Check(raw_grad_output) || !PyBool_Check(retain_variables)) {
THPUtils_invalidArguments(args, nullptr, "_do_backward", 1, "(tuple, bool)");
return nullptr;
}
THPUtils_assert(PyTuple_GET_SIZE(raw_grad_output) == self->cdata.num_inputs(),
"%s got an invalid number of gradients (expected %d got %d)",
THPUtils_typename(self), self->cdata.num_inputs(),
PyTuple_GET_SIZE(raw_grad_output));
// Some of the output might have been unused, so we have to allocate
// zero-filled buffers instead
Py_INCREF(raw_grad_output);
THPObjectPtr grad_output(raw_grad_output);
_prepare_grads(self, grad_output, true);
// self.backward(*grad_output)
THPObjectPtr backward_fn(PyObject_GetAttrString((PyObject*)self, "backward"));
THPUtils_assert(backward_fn.get(), "function %s doesn't implement a required "
"'backward' method", THPUtils_typename((PyObject*)self));
THPObjectPtr grad_input(PyObject_CallObject(backward_fn, grad_output.get()));
if (!grad_input) return nullptr;
ensure_tuple(grad_input);
// We allow functions to return more gradients, than there were outputs,
// if and only if the additional ones are all None
_trim_grad_input(self, grad_input);
int num_grads = PyTuple_GET_SIZE(grad_input.get());
int num_outputs = self->cdata.num_outputs();
THPUtils_assert(num_grads == num_outputs, "%s returned an invalid number of "
"gradient tensors (expected %d, but got %d)", THPUtils_typename(self),
num_outputs, num_grads);
// If any of the remaining grad_inputs are None, zero them.
_prepare_grads(self, grad_input, false);
return grad_input.release();
} catch (python_error& e) {
return nullptr;
} catch (std::exception& e) {
THPUtils_setError(e.what());
return nullptr;
}
}
////////////////////////////////////////////////////////////////////////////////
// Other methods / attributes
////////////////////////////////////////////////////////////////////////////////
PyObject* THPFunction__register_hook_dict(THPFunction *self, PyObject *_var)
{
THPUtils_assert(THPVariable_Check(_var), "_register_hook_dict expected a variable");
THPVariable *var = (THPVariable*)_var;
std::unique_ptr<FunctionPreHook> hook(new PyFunctionPreHook(
var->backward_hooks, var->cdata.output_nr()));
self->cdata.add_pre_hook(std::move(hook));
Py_RETURN_NONE;
}
PyObject* THPFunction_register_hook(THPFunction *self, PyObject *hook)
{
return torch::autograd::registerFunctionHook(self->cdata, hook);
}
static PyObject *unpack_saved_variables(
THPFunction *self,
std::function<PyObject*(const Variable&)> unpack_fn)
{
THPUtils_assert(!self->has_freed_buffers, ERR_BACKWARD_TWICE);
auto& saved_variables = self->saved_variables;
if (saved_variables.empty())
return PyTuple_New(0);
int num_saved = saved_variables.size();
THPObjectPtr saved(PyTuple_New(num_saved));
if (!saved)
return nullptr;
auto saved_for = THPFunction_asFunction(self);
for (int i = 0; i < num_saved; i++) {
auto unpacked_var = saved_variables[i].unpack(saved_for);
THPObjectPtr value;
if (!unpacked_var.defined()) {
Py_INCREF(Py_None);
value = Py_None;
} else {
value = unpack_fn(unpacked_var);
}
PyTuple_SET_ITEM(saved.get(), i, value.release());
}
return saved.release();
}
PyObject *THPFunction_saved_tensors(THPFunction *self, void *_unused)
{
HANDLE_TH_ERRORS
return unpack_saved_variables(self, [](const Variable& var) {
return THPVariable_Wrap(var);
});
END_HANDLE_TH_ERRORS
}
PyObject *THPFunction_saved_variables(THPFunction *self, void *_unused)
{
HANDLE_TH_ERRORS
auto r = PyErr_WarnEx(PyExc_DeprecationWarning,
"'saved_variables' is deprecated; use 'saved_tensors'", 0);
if (r != 0) throw python_error();
return unpack_saved_variables(self, [](const Variable& var) {
return THPVariable_Wrap(var);
});
END_HANDLE_TH_ERRORS
}
PyObject *THPFunction_next_functions(THPFunction *self, void *_unused)
{
const auto num_outputs = self->cdata.num_outputs();
THPObjectPtr result(PyTuple_New(num_outputs));
if (!result)
return nullptr;
for (uint32_t i = 0; i < num_outputs; i++) {
THPObjectPtr fn_tuple(PyTuple_New(2));
if (!fn_tuple) return nullptr;
const auto& edge = self->cdata.next_edge(i);
PyObject* fn = functionToPyObject(edge.function);
if (!fn) return nullptr;
PyTuple_SET_ITEM(fn_tuple.get(), 0, fn);
PyTuple_SET_ITEM(fn_tuple.get(), 1, THPUtils_packInt64(edge.input_nr));
PyTuple_SET_ITEM(result.get(), i, fn_tuple.release());
}
return result.release();
}
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
namespace {
template<PyObject* THPFunction::*ptr>
PyObject* getObject(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
PyObject* value = self->*ptr;
if (!value) {
Py_RETURN_NONE;
}
Py_INCREF(value);
return value;
}
template<PyObject* THPFunction::*ptr>
int setObject(PyObject* obj, PyObject* value, void* _unused) {
auto self = (THPFunction*)obj;
if (value == Py_None) {
value = nullptr;
}
Py_XDECREF((self->*ptr));
Py_XINCREF(value);
self->*ptr = value;
return 0;
}
template<typename M, M THPFunction::*ptr, PyObject* (*Convert)(long)>
PyObject* getMember(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
return Convert(self->*ptr);
}
template<typename M, M Function::*ptr, PyObject* (*Convert)(long)>
PyObject* getImplMember(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
return Convert(self->cdata.*ptr);
}
PyObject* getRequiresGrad(PyObject* obj, void* _unused) {
Py_RETURN_TRUE;
}
}
static struct PyGetSetDef THPFunction_properties[] = {
{"saved_tensors", (getter)THPFunction_saved_tensors, nullptr, nullptr, nullptr},
{"saved_variables", (getter)THPFunction_saved_variables, nullptr, nullptr, nullptr},
{"next_functions", (getter)THPFunction_next_functions, nullptr, nullptr, nullptr},
{"to_save", &getObject<&THPFunction::to_save>, &setObject<&THPFunction::to_save>, nullptr, nullptr},
{"non_differentiable", &getObject<&THPFunction::non_differentiable>, &setObject<&THPFunction::non_differentiable>, nullptr, nullptr},
{"dirty_tensors", &getObject<&THPFunction::dirty_tensors>, &setObject<&THPFunction::dirty_tensors>, nullptr, nullptr},
{"needs_input_grad", &getObject<&THPFunction::needs_input_grad>, nullptr, nullptr, nullptr},
{"requires_grad", getRequiresGrad, nullptr, nullptr, nullptr},
{"_is_tracing", &getMember<char, &THPFunction::is_traced, PyBool_FromLong>, nullptr, nullptr, nullptr},
{nullptr}
};
static struct PyMethodDef THPFunction_methods[] = {
{(char*)"apply", (PyCFunction)THPFunction_apply, METH_CLASS | METH_VARARGS, nullptr},
{(char*)"_do_forward", (PyCFunction)THPFunction_do_forward, METH_VARARGS, nullptr},
{(char*)"_do_backward", (PyCFunction)THPFunction_do_backward, METH_VARARGS, nullptr},
{(char*)"_register_hook_dict", (PyCFunction)THPFunction__register_hook_dict, METH_O, nullptr},
{(char*)"register_hook", (PyCFunction)THPFunction_register_hook, METH_O, nullptr},
{nullptr}
};
PyTypeObject THPFunctionType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C._FunctionBase", /* tp_name */
sizeof(THPFunction), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPFunction_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
nullptr, /* tp_doc */
(traverseproc)THPFunction_traverse, /* tp_traverse */
(inquiry)THPFunction_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
THPFunction_methods, /* tp_methods */
0, /* tp_members */
THPFunction_properties, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
THPFunction_new /* tp_new */
};
bool THPFunction_initModule(PyObject *module)
{
if (PyType_Ready(&THPFunctionType) < 0)
return false;
Py_INCREF(&THPFunctionType);
PyModule_AddObject(module, "_FunctionBase", (PyObject *)&THPFunctionType);
return true;
}
struct Decref {
void operator()(PyFunction* p) const {
AutoGIL gil;
Py_DECREF(p->obj);
}
};
// Similar to shared_from_this. There's a problem that the Python object
// and its cdata depend on each other being alive, so we can't keep
// shared_ptrs as members, but we'd like to be able to manage the lifetime of
// the objects using shared_ptrs in the C++ graph. This returns a new
// shared_ptr, which will decrement the Python reference count when it's
// destructed. WARNING: it's generally not safe to create weak_ptrs from
// these shared_ptrs since multiple shared_ptrs may control the same underlying
// object.
std::shared_ptr<PyFunction> THPFunction_asFunction(THPFunction* self)
{
if (!self) {
return std::shared_ptr<PyFunction>();
}
Py_INCREF((PyObject*)self);
return std::shared_ptr<PyFunction>(&self->cdata, Decref());
}