blob: 485572d9ee812cdb66d6f06574549ef5c4f503ed [file] [log] [blame]
#include "torch/csrc/autograd/functions/utils.h"
#include "torch/csrc/autograd/edge.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/variable.h"
#include <sstream>
#include <vector>
namespace torch { namespace autograd {
variable_list wrap_outputs(const variable_list& inputs, tensor_list&& outputs,
function_constructor ctr) {
variable_list result;
result.reserve(outputs.size());
if (!any_variable_requires_grad(inputs)) {
for (auto& output : outputs) {
if (output.defined()) {
result.push_back(make_variable(output, /*requires_grad=*/false));
} else {
result.emplace_back();
}
}
} else {
auto grad_fn = ctr(collect_next_edges(inputs));
for (auto& output : outputs) {
if (output.defined()) {
auto variable = autograd::make_variable(output, /*requires_grad=*/false);
autograd::create_gradient_edge(variable, grad_fn);
result.push_back(std::move(variable));
} else {
grad_fn->add_input_metadata(Function::undefined_input());
result.emplace_back();
}
}
}
return result;
}
void check_input_variables(const char* name, const variable_list& inputs, int args, int required_args) {
if (required_args == -1) {
required_args = args;
}
if (inputs.size() != (size_t)args) {
std::stringstream ss;
ss << name << ": expected " << args << " arguments (got " << inputs.size();
ss << ")";
throw std::runtime_error(ss.str());
}
for (int i = 0; i < required_args; ++i) {
if (!inputs[i].defined()) {
std::stringstream ss;
ss << name << ": expected Variable at argument " << i << " (got None)";
throw std::runtime_error(ss.str());
}
}
}
}} // namespace torch::autograd