blob: 68e95e6f25ffb31eeb7c89bde010350effec8bd8 [file] [log] [blame]
#include "caffe2/operators/log_op.h"
#include <string>
#include <vector>
namespace caffe2 {
REGISTER_CPU_OPERATOR(
Log,
UnaryElementwiseOp<TensorTypes<float>, CPUContext, LogFunctor<CPUContext>>);
OPERATOR_SCHEMA(Log)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Calculates the natural log of the given input tensor, element-wise. This
operation can be done in an in-place fashion too, by providing the same input
and output blobs.
)DOC")
.Input(0, "input", "Input tensor")
.Output(
0,
"output",
"The natural log of the input tensor computed "
"element-wise")
.InheritOnnxSchema("Log");
namespace {
class GetLogGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"Div",
"",
std::vector<std::string>{GO(0), I(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(Log, GetLogGradient);
} // namespace caffe2