blob: 6ad988f5a2ef9570b69f486f7a0eba5a853d7bbd [file] [log] [blame]
#include "caffe2/operators/arg_ops.h"
#include <functional>
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
template <typename T, class Compare, class Context>
void ComputeArgImpl(
const TIndex prev_size,
const TIndex next_size,
const TIndex n,
const Compare& comp,
const T* X,
TIndex* Y,
Context* context) {
math::Set<TIndex, Context>(prev_size * next_size, TIndex(0), Y, context);
for (TIndex i = 0; i < prev_size; ++i) {
const T* cur_X = X + i * n * next_size + next_size;
for (TIndex k = 1; k < n; ++k) {
for (TIndex j = 0; j < next_size; ++j) {
TIndex* cur_Y = Y + i * next_size + j;
if (comp(*cur_X, X[i * n * next_size + *cur_Y * next_size + j])) {
*cur_Y = k;
}
++cur_X;
}
}
}
}
} // namespace
template <>
template <typename T>
bool ArgMaxReducer<CPUContext>::operator()(
const TIndex prev_size,
const TIndex next_size,
const TIndex n,
const T* X,
TIndex* Y,
CPUContext* context) const {
ComputeArgImpl(prev_size, next_size, n, std::greater<T>(), X, Y, context);
return true;
}
template <>
template <typename T>
bool ArgMinReducer<CPUContext>::operator()(
const TIndex prev_size,
const TIndex next_size,
const TIndex n,
const T* X,
TIndex* Y,
CPUContext* context) const {
ComputeArgImpl(prev_size, next_size, n, std::less<T>(), X, Y, context);
return true;
}
REGISTER_CPU_OPERATOR(ArgMax, ArgOp<CPUContext, ArgMaxReducer<CPUContext>>);
REGISTER_CPU_OPERATOR(ArgMin, ArgOp<CPUContext, ArgMinReducer<CPUContext>>);
namespace {
std::vector<TensorShape> InferTensor(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
std::vector<TensorShape> out(1);
ArgumentHelper helper(def);
int axis = helper.GetSingleArgument("axis", -1);
const bool keep_dims = helper.GetSingleArgument("keepdims", true);
const auto& in_dims = in[0].dims();
auto* out_dims = out[0].mutable_dims();
if (axis == -1) {
axis = in_dims.size() - 1;
}
for (int i = 0; i < axis; ++i) {
out_dims->Add(in_dims.Get(i));
}
if (keep_dims) {
out_dims->Add(1);
}
for (int i = axis + 1; i < in_dims.size(); ++i) {
out_dims->Add(in_dims.Get(i));
}
out[0].set_data_type(TensorProto::INT64);
return out;
}
} // namespace
OPERATOR_SCHEMA(ArgMax)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(InferTensor)
.SetDoc(R"DOC(
Retrive the argmax of the axis dimension. Given an input tensor of shape
[a_0, a_1, ..., a_{n-1}] and two arguments axis as int and keepdims as bool,
returns one output:
- Index tensor which contains the indices of the largest element. It has the
same dims as X.dims() with the dimension along axis equals 1 when
keepdims == true otherwise removed.
)DOC")
.Input(0, "X", "Tenor of shape [a_0, a_1, ..., a_{n-1}].")
.Output(0, "Indices", "Tensor of indices for the largest values.")
.Arg("axis", "The axis to get argmax.")
.Arg("keepdims", "Whether to keep the axis dim in the output.");
OPERATOR_SCHEMA(ArgMin)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(InferTensor)
.SetDoc(R"DOC(
Retrive the argmin of the axis dimension. Given an input tensor of shape
[a_0, a_1, ..., a_{n-1}] and two arguments axis as int and keepdims as bool,
returns one output:
- Index tensor which contains the indices of the largest element. It has the
same dims as X.dims() with the dimension along axis equals 1 when
keepdims == true otherwise removed.
)DOC")
.Input(0, "X", "Tenor of shape [a_0, a_1, ..., a_{n-1}].")
.Output(0, "Indices", "Tensor of indices for the largest values.")
.Arg("axis", "The axis to get argmin.")
.Arg("keepdims", "Whether to keep the axis dim in the output.");
NO_GRADIENT(ArgMax);
NO_GRADIENT(ArgMin);
} // namespace caffe2