| from . import benchmark | 
 | from . import tensor_engine | 
 |  | 
 |  | 
 | class NormalizationBench(benchmark.Benchmark): | 
 |     def __init__(self, mode, device, dtype, N, C, H, W): | 
 |         super().__init__(mode, device, dtype) | 
 |         self.N = N | 
 |         self.C = C | 
 |         self.H = H | 
 |         self.W = W | 
 |  | 
 |         self.data = self.nchw_rand( | 
 |             [self.N, self.C, self.H, self.W], | 
 |             device=device, dtype=dtype, | 
 |             requires_grad=self.requires_grad, | 
 |         ) | 
 |         self.running_mean = self.rand([self.C], device=device, dtype=dtype) | 
 |         self.running_var = self.rand([self.C], device=device, dtype=dtype) | 
 |         self.training = self.mode == "both" | 
 |  | 
 |     def config(self): | 
 |         return [self.N, self.C, self.H, self.W] | 
 |  | 
 |     def memory_workload(self): | 
 |         if self.mode == "fwd": | 
 |             sol_count = 1 + 1 | 
 |             algorithmic_count = 2 + 1 | 
 |         else: | 
 |             sol_count = (1 + 1) + (1 + 1) | 
 |             algorithmic_count = (2 + 1) + (3 + 1) | 
 |  | 
 |         buffer_size = self.N * self.C * self.H * self.W * 4 | 
 |         return { | 
 |             "sol": buffer_size * sol_count, | 
 |             "algorithmic": buffer_size * algorithmic_count, | 
 |         } | 
 |  | 
 |     @staticmethod | 
 |     def default_configs(): | 
 |         return [[128, 32, 128, 128]] | 
 |  | 
 |  | 
 | class BatchNormBench(NormalizationBench): | 
 |     def forward(self): | 
 |         y = self.batch_norm( | 
 |             self.data, self.running_mean, self.running_var, training=self.training | 
 |         ) | 
 |         return y | 
 |  | 
 |     @staticmethod | 
 |     def module(): | 
 |         return "batchnorm" | 
 |  | 
 |  | 
 | class InstanceNormBench(NormalizationBench): | 
 |     def forward(self): | 
 |         y = self.instance_norm(self.data) | 
 |         return y | 
 |  | 
 |     @staticmethod | 
 |     def module(): | 
 |         return "instance_norm" | 
 |  | 
 |     def is_supported(self): | 
 |         return tensor_engine.is_supported(self.instance_norm) | 
 |  | 
 |  | 
 | class LayerNormBench(NormalizationBench): | 
 |     def forward(self): | 
 |         y = self.layer_norm(self.data, [self.H, self.W]) | 
 |         return y | 
 |  | 
 |     @staticmethod | 
 |     def module(): | 
 |         return "layernorm" | 
 |  | 
 |  | 
 | benchmark.register_benchmark_class(BatchNormBench) | 
 | benchmark.register_benchmark_class(InstanceNormBench) | 
 | benchmark.register_benchmark_class(LayerNormBench) |