blob: e0e5f2b6bef46591e9b99e22e3e40ff56ee0c6b0 [file] [log] [blame]
import numpy as np
from pycaffe2 import core, workspace
from caffe2.proto import caffe2_pb2
class GradientChecker:
"""A gradient checker in Python.
This is not the most efficient way to check gradients, as the Python interface
will involve a lot of copy back and forth operations. Use at your own risk.
"""
def __init__(self, stepsize, threshold,
device_option=caffe2_pb2.DeviceOption(),
workspace_name="gradient_check"):
self._stepsize = stepsize
self._threshold = threshold
self._device_option = device_option
self._workspace_name = workspace_name
def GetLossAndGrad(self, op, grad_ops, x, input_name, outputs_with_grads):
# First, feed in the current input. Note that we are not changing anything
# else, so we don't need to feed in others.
workspace.FeedBlob(input_name, x, self._device_option)
# Run.
workspace.RunOperatorOnce(op)
loss = 0.
# Get Loss and feed in the gradients, run gradient ops.
for idx in outputs_with_grads:
name = op.output[idx]
arr = workspace.FetchBlob(name)
loss += (arr ** 2).sum()
workspace.FeedBlob(core.GetGradientName(name), arr, self._device_option)
loss /= 2.
# Run gradient ops
workspace.RunOperatorsOnce(grad_ops)
# Get gradients
grad = workspace.FetchBlob(core.GetGradientName(input_name))
return loss, grad
def CheckSimple(self, op, inputs, input_to_check,
outputs_with_grads, grad_ops=None):
"""Checks the operator in a very simple fashion by stacking a sum of squares
on the top.
Inputs:
op: the operator to be checked.
inputs: the input data in numpy arrays.
input_to_check: an index specifying which input blob we should
check.
outputs_with_grads: indices specifying which output blobs will we
need to check gradients with. For these outputs, we will collect a
squared sum and also feed in their gradients.
grad_operator: the gradient operator. If not given, we will get the
gradient operator from the gradient registry.
Outputs:
boolean: True if it passes, False if it does not pass.
"""
# Entering the checker workspace
old_ws_name = workspace.CurrentWorkspace()
if self._workspace_name != old_ws_name:
workspace.SwitchWorkspace(self._workspace_name, True)
op.device_option.CopyFrom(self._device_option)
if grad_ops is None:
grad_ops = core.GradientRegistry.GetGradient(op)
dims_to_check = inputs[input_to_check].size
# First, feed in the input.
for i, arr in enumerate(inputs):
workspace.FeedBlob(op.input[i], arr, self._device_option)
# Get the loss and gradient for the original.
input_name = op.input[input_to_check]
loss, grad = self.GetLossAndGrad(op, grad_ops, inputs[input_to_check],
input_name, outputs_with_grads)
grad_estimate = np.zeros_like(inputs[input_to_check])
for current_dim in range(dims_to_check):
# Positive gradient
inputs[input_to_check].flat[current_dim] += self._stepsize
pos_loss, _ = self.GetLossAndGrad(op, grad_ops, inputs[input_to_check],
input_name, outputs_with_grads)
# Negative gradient
inputs[input_to_check].flat[current_dim] -= self._stepsize * 2
neg_loss, _ = self.GetLossAndGrad(op, grad_ops, inputs[input_to_check],
input_name, outputs_with_grads)
# Recover the value
inputs[input_to_check].flat[current_dim] += self._stepsize
grad_estimate.flat[current_dim] = (pos_loss - neg_loss) / self._stepsize / 2
# Now, check correctness
scale = np.maximum(np.maximum(np.abs(grad), np.abs(grad_estimate)), 1)
fail_mat = (np.abs(grad - grad_estimate) > scale * self._threshold)
if np.any(fail_mat):
idx = np.flatnonzero(fail_mat)
#print 'Failed. [idx, grad, grad_estimate] are:'
#print np.vstack([idx, grad.flat[idx], grad_estimate.flat[idx]]).T
ret = False
else:
ret = True
# After finishing, cleaning up things.
if self._workspace_name != old_ws_name:
# We reset the workspace to make sure everything intermediate is cleaned
# up. Note that there is no need to delete a workspace - when empty it
# takes a very limited amount of memory.
workspace.ResetWorkspace()
workspace.SwitchWorkspace(old_ws_name)
return ret, grad, grad_estimate