blob: 2cb9df2052a6d50e54d1407a47719a8eacaf33d2 [file] [log] [blame]
# This a large test that goes through the translation of the bvlc caffenet
# model, runs an example through the whole model, and verifies numerically
# that all the results look right. In default, it is disabled unless you
# explicitly want to run it.
from caffe2.proto import caffe2_pb2
from caffe.proto import caffe_pb2
from google.protobuf import text_format
import numpy as np
import os
from pycaffe2 import caffe_translator, utils, workspace
import sys
import unittest
class TestNumericalEquivalence(unittest.TestCase):
def testBlobs(self):
names = ["conv1", "pool1", "norm1", "conv2", "pool2", "norm2", "conv3",
"conv4", "conv5", "pool5", "fc6", "fc7", "fc8", "prob"]
for name in names:
print 'Verifying ', name
caffe2_result = workspace.FetchBlob(name)
reference = np.load(
'data/testdata/caffe_translator/' + name + '_dump.npy')
self.assertEqual(caffe2_result.shape, reference.shape)
scale = np.max(caffe2_result)
np.testing.assert_almost_equal(caffe2_result / scale, reference / scale,
decimal=5)
if __name__ == '__main__':
if len(sys.argv) == 1:
print ('If you do not explicitly ask to run this test, I will not run it. '
'Pass in any argument to have the test run for you.')
sys.exit(0)
if not os.path.exists('data/testdata/caffe_translator'):
print 'No testdata existing for the caffe translator test. Exiting.'
sys.exit(0)
# We will do all the computation stuff in the global space.
caffenet = caffe_pb2.NetParameter()
caffenet_pretrained = caffe_pb2.NetParameter()
text_format.Merge(open('data/testdata/caffe_translator/deploy.prototxt').read(),
caffenet)
caffenet_pretrained.ParseFromString(
open('data/testdata/caffe_translator/bvlc_reference_caffenet.caffemodel')
.read())
net, pretrained_params = caffe_translator.TranslateModel(
caffenet, caffenet_pretrained)
caffe_translator.DeleteDropout(net)
for param in pretrained_params.protos:
workspace.FeedBlob(param.name, utils.Caffe2TensorToNumpyArray(param))
# Let's also feed in the data from the Caffe test code.
data = np.load('data/testdata/caffe_translator/data_dump.npy').astype(np.float32)
workspace.FeedBlob('data', data)
# Actually running the test.
workspace.RunNetOnce(net.SerializeToString())
unittest.main()