blob: 34960534275f506258846e916e807d8d469949df [file] [log] [blame]
from tools.codegen.model import *
from tools.codegen.api.types import CppArgument, DispatcherExpr, TensorOptionsArguments, \
DispatcherArgument, ThisArgument, LegacyDispatcherArgument
import tools.codegen.api.cpp as cpp
import tools.codegen.api.legacy_dispatcher as legacy_dispatcher
import tools.codegen.local as local
import itertools
from typing import Sequence, Optional
# This file describes the translation of JIT schema to the dispatcher
# API, the *unboxed* calling convention by which invocations through
# the dispatcher are made. Historically, the dispatcher API matched
# the C++ API, but with the establishment of the boxed API, we've
# made changes to the dispatcher API to so that the unboxed API
# better aligns with the boxed API. The dispatcher API hooks heavily
# into our template based boxing/unboxing machinery, so changes
# to this convention will usually need template updates too.
#
# Prominent characteristics of the dispatcher API:
#
# - 'use_c10_dispatcher: full' controls whether or not we actually
# use the modern calling convention or not. When use_c10_dispatcher
# is not enabled, we don't use the template machinery.
#
# - dtype, layout, device and pin_memory are represented as separate
# arguments.
#
def argumenttype_type(t: Type, *, mutable: bool) -> str:
if local.use_c10_dispatcher() is UseC10Dispatcher.full:
# This is a faux amis. If it makes sense in the future to add
# more special cases here, or invert things so cpp.argument_type
# calls this, or just completely inline the function, please do
# it.
return cpp.argumenttype_type(t, mutable=mutable)
else:
# This is real sharing. If you're modifying this path, ask
# yourself why you are changing the legacy dispatcher protocol
# here and not in legacy_dispatcher.
return legacy_dispatcher.argumenttype_type(t, mutable=mutable)
def argument_type(a: Argument) -> str:
return argumenttype_type(a.type, mutable=a.is_write)
def returns_type(rs: Sequence[Return]) -> str:
# At present, there is no difference. But there could be!
return cpp.returns_type(rs)
def argument(a: Argument) -> DispatcherArgument:
if local.use_c10_dispatcher() is UseC10Dispatcher.full:
return DispatcherArgument(
type=argument_type(a),
name=a.name,
argument=a,
)
else:
la = legacy_dispatcher.argument(a)
return DispatcherArgument(
type=la.type,
name=la.name,
argument=la.argument,
)
def arguments(func: FunctionSchema) -> Sequence[DispatcherArgument]:
if local.use_c10_dispatcher() is UseC10Dispatcher.full:
return list(map(argument, itertools.chain(func.out_arguments, func.arguments, func.kwarg_only_arguments)))
else:
return [
DispatcherArgument(type=la.type, name=la.name, argument=la.argument)
for la in legacy_dispatcher.arguments(func)
]
# Given a set of CppArguments in scope, return a sequence of dispatcher
# expressions that translate the cpp API into dispatcher API
def cppargument_exprs(a: CppArgument, *, tensor_options: Optional[CppArgument]) -> Sequence[DispatcherExpr]:
if isinstance(a.argument, TensorOptionsArguments):
if local.use_c10_dispatcher() is UseC10Dispatcher.full:
ta = a.argument
return [
DispatcherExpr(type=argument_type(ta.dtype), expr=f'optTypeMetaToScalarType({a.name}.dtype_opt())'),
DispatcherExpr(type=argument_type(ta.layout), expr=f'{a.name}.layout_opt()'),
DispatcherExpr(type=argument_type(ta.device), expr=f'{a.name}.device_opt()'),
DispatcherExpr(type=argument_type(ta.pin_memory), expr=f'{a.name}.pinned_memory_opt()'), # weird discrep
]
else:
return [DispatcherExpr(type='const TensorOptions &', expr=a.name)]
elif isinstance(a.argument, Argument):
if a.name == 'memory_format' and tensor_options is not None and local.use_c10_dispatcher() is UseC10Dispatcher.full:
return [DispatcherExpr(
type=argument_type(a.argument),
expr=f'c10::impl::check_tensor_options_and_extract_memory_format({tensor_options.name}, {a.name})')
]
else:
return [DispatcherExpr(type=argument_type(a.argument), expr=a.name)]
elif isinstance(a.argument, ThisArgument):
return [DispatcherExpr(type=argument_type(a.argument.argument), expr=a.name)]
else:
assert_never(a.argument)
def cpparguments_exprs(args: Sequence[CppArgument]) -> Sequence[DispatcherExpr]:
tensor_options = next((a for a in args if isinstance(a.argument, TensorOptionsArguments)), None)
return [r for a in args for r in cppargument_exprs(a, tensor_options=tensor_options)]
# I don't think this is entirely sound, but it should be reasonably
# close
def legacydispatcherarguments_exprs(args: Sequence[LegacyDispatcherArgument]) -> Sequence[DispatcherExpr]:
return cpparguments_exprs([CppArgument(type=a.type, name=a.name, default=None, argument=a.argument) for a in args])