| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python.schema import Struct, ConstRecord |
| from caffe2.python import core, workspace |
| from caffe2.python.session import LocalSession |
| from caffe2.python.dataset import Dataset |
| from caffe2.python.pipeline import pipe |
| from caffe2.python.checkpoint import ( |
| CheckpointManager, MultiNodeCheckpointManager, Job, JobRunner) |
| from caffe2.python.net_builder import ops |
| from caffe2.python.task import Task, Node |
| from caffe2.python.test_util import TestCase |
| from caffe2.python.dataio import ReaderWithLimit |
| import tempfile |
| import numpy as np |
| import shutil |
| |
| |
| def build_pipeline(node_id): |
| with Node('reader:%d' % node_id): |
| with Job.current().init_group, Task(): |
| data_arr = Struct(('val', np.array(list(range(10))))) |
| data = ConstRecord(ops, data_arr) |
| ds = Dataset(data, name='dataset:%d' % node_id) |
| full_reader = ds.reader(ops) |
| total = ops.Const([100]) |
| |
| def inc_total(rec): |
| ops.Add([total, rec.val()], [total]) |
| |
| epoch_reader = ReaderWithLimit(full_reader, num_iter=3) |
| pipe(epoch_reader, processor=inc_total) |
| Job.current().add_stop_signal(epoch_reader.data_finished()) |
| return [total] |
| |
| |
| EXPECTED_TOTALS = [103, 115, 136, 145] |
| |
| |
| class TestCheckpoint(TestCase): |
| def run_with(self, builder): |
| with Job() as job: |
| outputs = build_pipeline(node_id=0) |
| output_fetcher = Task(step=core.Net('empty'), outputs=outputs) |
| |
| def fetch_total(session): |
| session.run(output_fetcher) |
| return output_fetcher.outputs()[0].fetch() |
| |
| session, checkpoint = builder() |
| compiled_job = job.compile(LocalSession) |
| num_epochs = JobRunner(compiled_job, checkpoint)(session) |
| self.assertEquals(num_epochs, len(EXPECTED_TOTALS)) |
| self.assertEquals(fetch_total(session), EXPECTED_TOTALS[-1]) |
| |
| for initial_epoch in range(1, num_epochs + 1): |
| session, checkpoint = builder() |
| JobRunner( |
| compiled_job, |
| checkpoint, resume_from_epoch=initial_epoch)(session) |
| self.assertEquals(fetch_total(session), EXPECTED_TOTALS[-1]) |
| |
| for epoch in range(1, num_epochs + 1): |
| session.run(checkpoint.load(epoch)) |
| self.assertEquals(fetch_total(session), EXPECTED_TOTALS[epoch - 1]) |
| |
| def test_single_checkpoint(self): |
| # test single node |
| with tempfile.NamedTemporaryFile() as tmp: |
| |
| def builder(): |
| ws = workspace.C.Workspace() |
| session = LocalSession(ws) |
| checkpoint = CheckpointManager(tmp.name, 'minidb') |
| return session, checkpoint |
| |
| self.run_with(builder) |
| |
| # test multi-node |
| try: |
| tmpdir = tempfile.mkdtemp() |
| |
| def builder(): |
| ws = workspace.C.Workspace() |
| session = LocalSession(ws) |
| checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') |
| return session, checkpoint |
| |
| self.run_with(builder) |
| finally: |
| shutil.rmtree(tmpdir) |
| |
| def test_load_model_from_checkpoints(self): |
| try: |
| tmpdir = tempfile.mkdtemp() |
| |
| for node_id in range(3): |
| ws = workspace.C.Workspace() |
| session = LocalSession(ws) |
| checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') |
| with Job() as job: |
| build_pipeline(node_id) |
| compiled_job = job.compile(LocalSession) |
| job_runner = JobRunner(compiled_job, checkpoint) |
| num_epochs = job_runner(session) |
| self.assertEquals(num_epochs, len(EXPECTED_TOTALS)) |
| |
| # There are 12 global blobs after finishing up the job runner. |
| # (only blobs on init_group are checkpointed) |
| self.assertEquals(len(ws.blobs), 12) |
| |
| ws = workspace.C.Workspace() |
| session = LocalSession(ws) |
| self.assertEquals(len(ws.blobs), 0) |
| model_blob_names = ['reader:1/task/GivenTensorInt64Fill:0', |
| 'reader:2/task/GivenTensorInt64Fill:0'] |
| checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') |
| with Job() as job: |
| for node_id in range(3): |
| build_pipeline(node_id) |
| compiled_job = job.compile(LocalSession) |
| job_runner = JobRunner(compiled_job, checkpoint) |
| job_runner.load_blobs_from_checkpoints(blob_names=model_blob_names, |
| epoch=1, session=session) |
| |
| # Check that we can successfully load from checkpoints of epochs |
| # 1 to 4, but not epoch 5. |
| for epoch in range(1, 5): |
| self.assertTrue( |
| job_runner.load_blobs_from_checkpoints( |
| blob_names=model_blob_names, epoch=epoch, |
| session=session)) |
| # Check that all the model blobs are loaded. |
| for blob_name in model_blob_names: |
| self.assertTrue(ws.has_blob(blob_name)) |
| self.assertEquals(ws.fetch_blob(blob_name), |
| np.array([EXPECTED_TOTALS[epoch - 1]])) |
| self.assertFalse( |
| job_runner.load_blobs_from_checkpoints( |
| blob_names=model_blob_names, epoch=5, session=session)) |
| |
| finally: |
| shutil.rmtree(tmpdir) |