blob: 5dfc79136f3875afd8b6ba2af585296190bd5745 [file] [log] [blame]
#ifndef CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_
#define CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_
#include <list>
#include <map>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
namespace caffe2 {
// LearningRateFunctor is a functor that when fed with an iter number, produces
// the learning rate for the corresponding iteration.
template <typename T>
class LearningRateFunctor {
public:
virtual ~LearningRateFunctor() {}
virtual T operator()(const int64_t iter) const = 0;
};
// Fixed: not changing the learning rate at all.
template <typename T>
class FixedLearningRate : public LearningRateFunctor<T> {
public:
T operator()(const int64_t /*iter*/) const override {
return 1.;
}
};
// Alter: alternatate learning rate with active_period and inactive_period.
// update for for a duration of active_period and then stop for a duration of
// inactive_period if active_first, and vice versa
template <typename T>
class AlternateLearningRate : public LearningRateFunctor<T> {
public:
AlternateLearningRate(
const int64_t active_period,
const int64_t inactive_period,
const bool active_first)
: active_period_(active_period),
inactive_period_(inactive_period),
active_first_(active_first) {}
T operator()(const int64_t iter) const override {
if (iter % (active_period_ + inactive_period_) <
(active_first_ ? active_period_ : inactive_period_)) {
return active_first_ ? 1. : 0.;
} else {
return active_first_ ? 0. : 1.;
};
};
int64_t active_period_;
int64_t inactive_period_;
bool active_first_;
};
// Step: return gamma ^ (floor(iter / step))
template <typename T>
class StepLearningRate : public LearningRateFunctor<T> {
public:
StepLearningRate(const int stepsize, const T gamma)
: stepsize_(stepsize), gamma_(gamma) {}
T operator()(const int64_t iter) const override {
return std::pow(gamma_, static_cast<T>(iter / stepsize_));
}
int stepsize_;
T gamma_;
};
// Exp: return gamma ^ iter
template <typename T>
class ExpLearningRate : public LearningRateFunctor<T> {
public:
explicit ExpLearningRate(const T gamma) : gamma_(gamma) {}
T operator()(const int64_t iter) const override {
return std::pow(gamma_, static_cast<T>(iter));
}
T gamma_;
};
// Inv: return (1 + gamma * iter) ^ (-power)
template <typename T>
class InvLearningRate : public LearningRateFunctor<T> {
public:
InvLearningRate(const T gamma, const T power)
: gamma_(gamma), power_(power) {}
T operator()(const int64_t iter) const override {
return std::pow(T(1) + gamma_ * iter, -power_);
}
T gamma_;
T power_;
};
// Poly: return (1 - iter/max_iter) ^ (power)
template <typename T>
class PolyLearningRate : public LearningRateFunctor<T> {
public:
PolyLearningRate(const T power, const int64_t max_iter)
: power_(power), max_iter_(max_iter) {}
T operator()(const int64_t iter) const override {
return std::pow(1 - T(iter) / T(max_iter_), power_);
}
T power_;
uint64_t max_iter_;
};
// LinearWarmup: return max(iter/num_iter, 1)
template <typename T>
class LinearWarmupLearningRate : public LearningRateFunctor<T> {
public:
LinearWarmupLearningRate(const T start_multiplier, const int64_t num_iter)
: start_multiplier_(start_multiplier), num_iter_(num_iter) {}
T operator()(const int64_t iter) const override {
if (iter >= num_iter_) {
return 1.;
}
return start_multiplier_ + (1. - start_multiplier_) * T(iter) / T(num_iter_);
}
T start_multiplier_;
uint64_t num_iter_;
};
// ConstantWarmup: return scale when iter < num_iter, and 1 otherwise
template <typename T>
class ConstantWarmupLearningRate : public LearningRateFunctor<T> {
public:
ConstantWarmupLearningRate(const T multiplier, const int64_t num_iter)
: multiplier_(multiplier), num_iter_(num_iter) {}
T operator()(const int64_t iter) const override {
if (iter >= num_iter_) {
return 1.;
}
return T(multiplier_);
}
T multiplier_;
uint64_t num_iter_;
};
// hill: the learning rate changes according to following 3 stages
// 1) linear warmup (increasing) at first num_iter steps from start_multiplier
// 2) inverse shrink (decreasing) afterwards (gamma, power)
// 3) lower bounded by end_multiplier
template <typename T>
class HillLearningRate : public LearningRateFunctor<T> {
public:
HillLearningRate(
const int64_t num_iter,
const T start_multiplier,
const T gamma,
const T power,
const T end_multiplier)
: linear_warmup_lr_(start_multiplier, num_iter),
inv_lr_(gamma, power),
num_iter_(num_iter),
end_multiplier_(end_multiplier) {}
T operator()(const int64_t iter) const override {
if (iter < num_iter_) {
return linear_warmup_lr_(iter);
} else {
return std::max(end_multiplier_, inv_lr_(iter - num_iter_));
}
}
LinearWarmupLearningRate<T> linear_warmup_lr_;
InvLearningRate<T> inv_lr_;
int64_t num_iter_;
T end_multiplier_;
};
template <typename T>
class CompositeLearningRateItem {
public:
CompositeLearningRateItem(int64_t num_iter, LearningRateFunctor<T>* policy)
: num_iter_(num_iter), policy_(policy) {}
int64_t num_iter_;
LearningRateFunctor<T>* policy_;
};
// composite: the learning policy changes according to current iteration #
template <typename T>
class CompositeLearningRate : public LearningRateFunctor<T> {
public:
CompositeLearningRate(
const std::list<CompositeLearningRateItem<T>>& sub_policies) {
DCHECK_GT(sub_policies.size(), 0);
int64_t num_iter_start = 1;
for (auto it = sub_policies.begin(); it != sub_policies.end(); ++it) {
DCHECK_GT(it->num_iter_, 0);
sub_policies_[num_iter_start].reset(it->policy_);
num_iter_start += it->num_iter_;
}
}
T operator()(const int64_t iter) const override {
auto sub_policy = sub_policies_.upper_bound(iter);
DCHECK(sub_policy != sub_policies_.begin());
--sub_policy;
return (*sub_policy->second)(iter);
}
private:
std::map<int64_t, std::unique_ptr<LearningRateFunctor<T>>> sub_policies_;
};
} // namespace caffe2
#endif // CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_