blob: 6808890916c56419893b9e05e6f282c5dce01f7c [file] [log] [blame]
#include <torch/csrc/jit/script/module.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/error_report.h>
#include <torch/csrc/jit/script/schema_matching.h>
namespace torch {
namespace jit {
namespace script {
static ModulePtr create_module_object(
c10::QualifiedName class_name,
std::shared_ptr<CompilationUnit> cu,
bool shouldMangle = false) {
// If the name is unqualified, prepend a `__torch__`, similar to what Python
// does with `__main__` for top-level code.
if (class_name.prefix().empty()) {
class_name = c10::QualifiedName("__torch__", class_name.name());
}
if (shouldMangle && cu->get_class(class_name) != nullptr) {
class_name = cu->mangle(class_name);
}
auto cls = ClassType::create(std::move(class_name), cu, /*is_module=*/true);
cu->register_type(cls);
return c10::ivalue::Object::create(
c10::StrongTypePtr(std::move(cu), std::move(cls)), 0);
}
Module::Module(c10::QualifiedName class_name)
: module_value_(create_module_object(
std::move(class_name),
std::make_shared<CompilationUnit>())) {}
Module::Module(
std::shared_ptr<CompilationUnit> cu,
const c10::ClassTypePtr& type)
: module_value_(c10::ivalue::Object::create(
c10::StrongTypePtr(std::move(cu), type),
type->numAttributes())) {}
Module::Module(
c10::QualifiedName class_name,
std::shared_ptr<CompilationUnit> cu,
bool shouldMangle)
: module_value_(create_module_object(
std::move(class_name),
std::move(cu),
shouldMangle)) {}
ModulePtr Module::module_object() const {
if (!module_value_) {
// User has created a Model without assigning it to something already
// loaded. This is done in tests, and when using the .define method.
module_value_ =
create_module_object("Module", std::make_shared<CompilationUnit>());
}
return module_value_;
}
// first class mode runs models as first class objects,
// and does not force inlining everywhere. This is experimental
// as we bring up the system since it will degrade performance
// and may introduce bugs. test_jit.py provides context managers
// that enable it for specific tests.
thread_local bool inline_everything = false;
bool& getInlineEverythingMode() {
return inline_everything;
}
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
to_impl(device, dtype, non_blocking);
}
void Module::to(at::ScalarType dtype, bool non_blocking) {
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
}
void Module::to(at::Device device, bool non_blocking) {
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
}
void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) const {
#ifndef C10_MOBILE
ExportModule(*this, out, extra_files, false);
#else
AT_ERROR("Saving module is not supported on mobile.");
#endif
}
void Module::save(const std::string& filename, const ExtraFilesMap& extra_files)
const {
#ifndef C10_MOBILE
ExportModule(*this, filename, extra_files, false);
#else
AT_ERROR("Saving module is not supported on mobile.");
#endif
}
void Module::_save_for_mobile(std::ostream& out, const ExtraFilesMap& extra_files) const {
#ifndef C10_MOBILE
ExportModule(*this, out, extra_files, true);
#else
AT_ERROR("Saving module is not supported on mobile.");
#endif
}
void Module::_save_for_mobile(const std::string& filename, const ExtraFilesMap& extra_files)
const {
#ifndef C10_MOBILE
ExportModule(*this, filename, extra_files, true);
#else
AT_ERROR("Saving module is not supported on mobile.");
#endif
}
void module_state_to(
const IValue& iv,
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// Need to access the `at::Tensor` as a `Variable` here.
autograd::Variable variable = iv.toTensor();
// Use the data's original device or dtype if not supplied here.
auto new_data = variable.to(
device.value_or(variable.device()),
dtype.value_or(variable.scalar_type()),
non_blocking);
variable.set_data(new_data);
}
void Module::to_impl(
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// First call `to()` on every child module.
for (NameModule m : get_modules()) {
m.module.to_impl(device, dtype, non_blocking);
}
// Then convert every of our parameters.
for (NameValue parameter : get_parameters()) {
module_state_to(parameter.value, device, dtype, non_blocking);
}
// Then convert every tensor attributes (buffers).
for (NameValue attr : get_attributes()) {
if (attr.value.type()->isSubtypeOf(TensorType::get())) {
module_state_to(attr.value, device, dtype, non_blocking);
}
}
}
Method::Method(ModulePtr owner, Function* function)
: owner_(std::move(owner)), function_(function) {}
Module Method::owner() const {
return Module(owner_);
}
void Method::run(Stack& stack) {
stack.insert(stack.begin(), owner().module_object());
function_->run(stack);
}
IValue Method::operator()(std::vector<IValue> stack, const Kwargs& kwargs) {
stack.insert(stack.begin(), owner().module_object());
return (*function_)(std::move(stack), kwargs);
}
void Module::define(const std::string& src, const ResolverPtr& resolver) {
const auto self = SimpleSelf(type());
class_compilation_unit()->define(
name(), src, resolver ? resolver : script::nativeResolver(), &self);
}
void Module::clone_method(
const Module& orig,
const Function& method,
const std::unordered_map<TypePtr, TypePtr>& type_remap) {
// type remapping - when we copy method implementations from one module
// singleton to another, we need to update the types of the self arguments
// to match the new module.
// XXX - this only handles modules that occur as variables, not modules
// that appear in aggregate types. Currently this works fine because
// we restrict how modules can be used during the lowering step. Eventually,
// we will need to decide what it means for us to 'copy' a module.
// For instance, we can copy just the state (parameters, attributes),
// but share the code. Or we can copy the code. If we choose to copy the
// code, what should we do about aggregate types that contain a module?
auto type_remap_fn = [&](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
auto graph = method.graph()->copy();
graph->remapTypes(type_remap_fn);
auto schema = method.getSchema().cloneWithRemappedTypes(type_remap_fn);
const auto this_method_name = getNameForMethod(method.name());
auto copied =
class_compilation_unit()->create_function(this_method_name, graph);
type()->addMethod(copied);
copied->setSchema(std::move(schema));
}
void Module::clone_method(const Module& orig, const std::string& name) {
std::unordered_map<TypePtr, TypePtr> type_remap;
std::vector<std::pair<Module, Module>> to_scan = {{orig, *this}};
while (!to_scan.empty()) {
auto entry = to_scan.back();
to_scan.pop_back();
type_remap[entry.first.module_object()->type()] =
entry.second.module_object()->type();
for (const NameModule& s : entry.first.get_modules()) {
to_scan.emplace_back(s.module, entry.second.get_module(s.name));
}
}
return clone_method(orig, orig.get_method(name).function(), type_remap);
}
Module Module::clone() const {
std::unordered_map<TypePtr, TypePtr> type_remap;
return clone_impl(type_remap);
}
Module Module::clone_impl(
std::unordered_map<TypePtr, TypePtr>& type_remap) const {
// Create a new module_object in the same compilation unit.
// The name is the same as for the original module, but it'll be mangled.
// The class type is also created from scratch.
Module r(name(), class_compilation_unit(), true);
type_remap[type()] = r.type();
// Copy slots. If a slot is a module - recursively clone it.
for (const NameValue& s : get_slots()) {
if (*entity_type(s.name) == EntityType::MODULE) {
const Module& orig = Module(s.value.toObject());
Module cloned = orig.clone_impl(type_remap);
type_remap[orig.type()] = cloned.type();
r.register_module(s.name, cloned);
} else {
r.register_attribute(
s.name,
s.value.type(),
s.value,
*entity_type(s.name) == EntityType::PARAMETER);
}
}
// Clone methods remapping the types to the cloned ones.
for (auto& fn : type()->methods()) {
r.clone_method(*this, *fn, type_remap);
}
return r;
}
void Module::train(bool on) {
for (NameModule s : get_modules()) {
s.module.train(on);
}
if (auto slot = find_attribute("training")) {
set_attribute("training", on);
} else {
TORCH_INTERNAL_ASSERT("'training' attribute not found");
}
}
IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const {
// Look up the class
const auto classType =
class_compilation_unit()->get_class(c10::QualifiedName(name));
if (!classType) {
AT_ERROR(
"Could not find class with name: '",
name.qualifiedName(),
"' in module.");
}
// Create a bare object with correct number of slots
const size_t numAttrs = classType->numAttributes();
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(class_compilation_unit(), classType), numAttrs);
// Invoke the `__init__()` of the class with the arguments provided.
Stack stackWithSelf = {obj};
for (auto& arg : stack) {
stackWithSelf.push_back(std::move(arg));
}
// Note: following Python, `__init__()` modifies its first parameter in-place
// and returns nothing.
classType->getMethod("__init__")->operator()(std::move(stackWithSelf));
return obj;
}
ivalue_list Module::get_parameters() const {
return ivalue_list(*this, EntityType::PARAMETER);
}
ivalue_list Module::get_attributes() const {
return ivalue_list(*this, EntityType::ATTRIBUTE);
}
ivalue_list Module::get_slots() const {
return ivalue_list(*this, c10::nullopt);
}
module_list Module::get_modules() const {
return module_list(*this, EntityType::MODULE);
}
c10::optional<autograd::Variable> Module::find_parameter(
const std::string& name) const {
auto slot_idx = type()->findAttributeSlot(name);
if (slot_idx && type()->is_parameter(*slot_idx)) {
return autograd::as_variable_ref(
module_object()->getSlot(*slot_idx).toTensor());
}
return c10::nullopt;
}
c10::optional<IValue> Module::find_attribute(const std::string& name) const {
auto slot_idx = type()->findAttributeSlot(name);
if (slot_idx && !type()->is_parameter(*slot_idx) &&
!type()->is_module(*slot_idx)) {
return module_object()->getSlot(*slot_idx);
}
return c10::nullopt;
}
c10::optional<autograd::Variable> Module::find_buffer(
const std::string& name) const {
auto slot_idx = type()->findAttributeSlot(name);
if (slot_idx && !type()->is_parameter(*slot_idx) &&
!type()->is_module(*slot_idx) &&
type()->getAttribute(*slot_idx)->isSubtypeOf(TensorType::get())) {
return autograd::as_variable_ref(
module_object()->getSlot(*slot_idx).toTensor());
}
return c10::nullopt;
}
c10::optional<Module> Module::find_module(const std::string& name) const {
auto slot_idx = type()->findAttributeSlot(name);
if (slot_idx && type()->is_module(*slot_idx)) {
return Module(module_object()->getAttr(name).toObject());
}
return c10::nullopt;
}
c10::optional<Method> Module::find_method(const std::string& basename) const {
for (Function* fn : type()->methods()) {
if (fn->name() == basename) {
return Method(module_object(), fn);
}
}
return c10::nullopt;
}
void Module::apply(const std::function<void(Module&)>& fn) {
for (NameModule s : get_modules()) {
s.module.apply(fn);
}
fn(*this);
}
std::string Module::dump_to_str(
bool print_method_bodies,
bool print_attr_values,
bool print_param_values,
int level = 0) const {
std::stringstream ss;
std::stringstream parameters_ss;
std::stringstream attributes_ss;
std::stringstream methods_ss;
std::stringstream submodules_ss;
for (const NameValue& p : get_parameters()) {
parameters_ss << p.name << " = ";
if (print_param_values) {
parameters_ss << p.value.toTensor() << std::endl;
} else {
parameters_ss << "..." << std::endl;
}
}
for (const NameValue& p : get_attributes()) {
attributes_ss << p.name << " = ";
if (!p.value.isTensor() || print_attr_values) {
attributes_ss << p.value << std::endl;
} else {
attributes_ss << "..." << std::endl;
}
}
for (const Method& method : get_methods()) {
methods_ss << " method " << method.name() << " {" << std::endl;
if (print_method_bodies) {
methods_ss << torch::jit::jit_log_prefix(
" ", method.graph()->toString())
<< std::endl;
}
methods_ss << " }" << std::endl;
}
ss << "module " << name().qualifiedName() << " {" << std::endl;
ss << " parameters {" << std::endl;
ss << torch::jit::jit_log_prefix(" ", parameters_ss.str());
ss << " }" << std::endl;
ss << " attributes {" << std::endl;
ss << torch::jit::jit_log_prefix(" ", attributes_ss.str());
ss << " }" << std::endl;
ss << " methods {" << std::endl;
ss << torch::jit::jit_log_prefix(" ", methods_ss.str());
ss << " }" << std::endl;
ss << " submodules {" << std::endl;
for (const NameModule& s : get_modules()) {
// We do level + 2, because one level of indentation comes from 'submodules'
// scope and the other one goes from a specific submodule we're printing.
ss << s.module.dump_to_str(
print_method_bodies, print_attr_values, print_param_values, level + 2);
}
ss << " }" << std::endl;
ss << "}" << std::endl;
std::string indent(2 * level, ' ');
return torch::jit::jit_log_prefix(indent, ss.str());
}
void Module::dump(
bool print_method_bodies = true,
bool print_attr_values = true,
bool print_param_values = true) const {
std::cout << dump_to_str(
print_method_bodies,
print_attr_values,
print_param_values)
<< std::endl;
}
} // namespace script
} // namespace jit
} // namespace torch