| #include <torch/csrc/jit/script/module.h> |
| #include <c10/util/Exception.h> |
| #include <torch/csrc/autograd/generated/variable_factories.h> |
| #include <torch/csrc/jit/export.h> |
| #include <torch/csrc/jit/jit_log.h> |
| #include <torch/csrc/jit/operator.h> |
| #include <torch/csrc/jit/passes/dead_code_elimination.h> |
| #include <torch/csrc/jit/passes/inliner.h> |
| #include <torch/csrc/jit/script/compiler.h> |
| #include <torch/csrc/jit/script/error_report.h> |
| #include <torch/csrc/jit/script/schema_matching.h> |
| |
| namespace torch { |
| namespace jit { |
| namespace script { |
| |
| static ModulePtr create_module_object( |
| c10::QualifiedName class_name, |
| std::shared_ptr<CompilationUnit> cu, |
| bool shouldMangle = false) { |
| // If the name is unqualified, prepend a `__torch__`, similar to what Python |
| // does with `__main__` for top-level code. |
| if (class_name.prefix().empty()) { |
| class_name = c10::QualifiedName("__torch__", class_name.name()); |
| } |
| if (shouldMangle && cu->get_class(class_name) != nullptr) { |
| class_name = cu->mangle(class_name); |
| } |
| auto cls = ClassType::create(std::move(class_name), cu, /*is_module=*/true); |
| cu->register_type(cls); |
| return c10::ivalue::Object::create( |
| c10::StrongTypePtr(std::move(cu), std::move(cls)), 0); |
| } |
| |
| Module::Module(c10::QualifiedName class_name) |
| : module_value_(create_module_object( |
| std::move(class_name), |
| std::make_shared<CompilationUnit>())) {} |
| |
| Module::Module( |
| std::shared_ptr<CompilationUnit> cu, |
| const c10::ClassTypePtr& type) |
| : module_value_(c10::ivalue::Object::create( |
| c10::StrongTypePtr(std::move(cu), type), |
| type->numAttributes())) {} |
| |
| Module::Module( |
| c10::QualifiedName class_name, |
| std::shared_ptr<CompilationUnit> cu, |
| bool shouldMangle) |
| : module_value_(create_module_object( |
| std::move(class_name), |
| std::move(cu), |
| shouldMangle)) {} |
| |
| ModulePtr Module::module_object() const { |
| if (!module_value_) { |
| // User has created a Model without assigning it to something already |
| // loaded. This is done in tests, and when using the .define method. |
| module_value_ = |
| create_module_object("Module", std::make_shared<CompilationUnit>()); |
| } |
| return module_value_; |
| } |
| |
| // first class mode runs models as first class objects, |
| // and does not force inlining everywhere. This is experimental |
| // as we bring up the system since it will degrade performance |
| // and may introduce bugs. test_jit.py provides context managers |
| // that enable it for specific tests. |
| thread_local bool inline_everything = false; |
| bool& getInlineEverythingMode() { |
| return inline_everything; |
| } |
| |
| void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) { |
| to_impl(device, dtype, non_blocking); |
| } |
| |
| void Module::to(at::ScalarType dtype, bool non_blocking) { |
| to_impl(/*device=*/c10::nullopt, dtype, non_blocking); |
| } |
| |
| void Module::to(at::Device device, bool non_blocking) { |
| to_impl(device, /*dtype=*/c10::nullopt, non_blocking); |
| } |
| |
| void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) const { |
| #ifndef C10_MOBILE |
| ExportModule(*this, out, extra_files, false); |
| #else |
| AT_ERROR("Saving module is not supported on mobile."); |
| #endif |
| } |
| |
| void Module::save(const std::string& filename, const ExtraFilesMap& extra_files) |
| const { |
| #ifndef C10_MOBILE |
| ExportModule(*this, filename, extra_files, false); |
| #else |
| AT_ERROR("Saving module is not supported on mobile."); |
| #endif |
| } |
| |
| void Module::_save_for_mobile(std::ostream& out, const ExtraFilesMap& extra_files) const { |
| #ifndef C10_MOBILE |
| ExportModule(*this, out, extra_files, true); |
| #else |
| AT_ERROR("Saving module is not supported on mobile."); |
| #endif |
| } |
| |
| void Module::_save_for_mobile(const std::string& filename, const ExtraFilesMap& extra_files) |
| const { |
| #ifndef C10_MOBILE |
| ExportModule(*this, filename, extra_files, true); |
| #else |
| AT_ERROR("Saving module is not supported on mobile."); |
| #endif |
| } |
| |
| void module_state_to( |
| const IValue& iv, |
| const c10::optional<at::Device>& device, |
| const c10::optional<at::ScalarType>& dtype, |
| bool non_blocking) { |
| // Need to access the `at::Tensor` as a `Variable` here. |
| autograd::Variable variable = iv.toTensor(); |
| // Use the data's original device or dtype if not supplied here. |
| auto new_data = variable.to( |
| device.value_or(variable.device()), |
| dtype.value_or(variable.scalar_type()), |
| non_blocking); |
| variable.set_data(new_data); |
| } |
| |
| void Module::to_impl( |
| const c10::optional<at::Device>& device, |
| const c10::optional<at::ScalarType>& dtype, |
| bool non_blocking) { |
| // First call `to()` on every child module. |
| for (NameModule m : get_modules()) { |
| m.module.to_impl(device, dtype, non_blocking); |
| } |
| // Then convert every of our parameters. |
| for (NameValue parameter : get_parameters()) { |
| module_state_to(parameter.value, device, dtype, non_blocking); |
| } |
| // Then convert every tensor attributes (buffers). |
| for (NameValue attr : get_attributes()) { |
| if (attr.value.type()->isSubtypeOf(TensorType::get())) { |
| module_state_to(attr.value, device, dtype, non_blocking); |
| } |
| } |
| } |
| |
| Method::Method(ModulePtr owner, Function* function) |
| : owner_(std::move(owner)), function_(function) {} |
| |
| Module Method::owner() const { |
| return Module(owner_); |
| } |
| void Method::run(Stack& stack) { |
| stack.insert(stack.begin(), owner().module_object()); |
| function_->run(stack); |
| } |
| |
| IValue Method::operator()(std::vector<IValue> stack, const Kwargs& kwargs) { |
| stack.insert(stack.begin(), owner().module_object()); |
| return (*function_)(std::move(stack), kwargs); |
| } |
| |
| void Module::define(const std::string& src, const ResolverPtr& resolver) { |
| const auto self = SimpleSelf(type()); |
| class_compilation_unit()->define( |
| name(), src, resolver ? resolver : script::nativeResolver(), &self); |
| } |
| |
| void Module::clone_method( |
| const Module& orig, |
| const Function& method, |
| const std::unordered_map<TypePtr, TypePtr>& type_remap) { |
| // type remapping - when we copy method implementations from one module |
| // singleton to another, we need to update the types of the self arguments |
| // to match the new module. |
| // XXX - this only handles modules that occur as variables, not modules |
| // that appear in aggregate types. Currently this works fine because |
| // we restrict how modules can be used during the lowering step. Eventually, |
| // we will need to decide what it means for us to 'copy' a module. |
| // For instance, we can copy just the state (parameters, attributes), |
| // but share the code. Or we can copy the code. If we choose to copy the |
| // code, what should we do about aggregate types that contain a module? |
| auto type_remap_fn = [&](TypePtr in) { |
| auto it = type_remap.find(in); |
| if (it == type_remap.end()) |
| return in; |
| return it->second; |
| }; |
| auto graph = method.graph()->copy(); |
| graph->remapTypes(type_remap_fn); |
| auto schema = method.getSchema().cloneWithRemappedTypes(type_remap_fn); |
| const auto this_method_name = getNameForMethod(method.name()); |
| auto copied = |
| class_compilation_unit()->create_function(this_method_name, graph); |
| type()->addMethod(copied); |
| copied->setSchema(std::move(schema)); |
| } |
| |
| void Module::clone_method(const Module& orig, const std::string& name) { |
| std::unordered_map<TypePtr, TypePtr> type_remap; |
| std::vector<std::pair<Module, Module>> to_scan = {{orig, *this}}; |
| while (!to_scan.empty()) { |
| auto entry = to_scan.back(); |
| to_scan.pop_back(); |
| type_remap[entry.first.module_object()->type()] = |
| entry.second.module_object()->type(); |
| for (const NameModule& s : entry.first.get_modules()) { |
| to_scan.emplace_back(s.module, entry.second.get_module(s.name)); |
| } |
| } |
| return clone_method(orig, orig.get_method(name).function(), type_remap); |
| } |
| |
| Module Module::clone() const { |
| std::unordered_map<TypePtr, TypePtr> type_remap; |
| return clone_impl(type_remap); |
| } |
| |
| Module Module::clone_impl( |
| std::unordered_map<TypePtr, TypePtr>& type_remap) const { |
| // Create a new module_object in the same compilation unit. |
| // The name is the same as for the original module, but it'll be mangled. |
| // The class type is also created from scratch. |
| Module r(name(), class_compilation_unit(), true); |
| type_remap[type()] = r.type(); |
| |
| // Copy slots. If a slot is a module - recursively clone it. |
| for (const NameValue& s : get_slots()) { |
| if (*entity_type(s.name) == EntityType::MODULE) { |
| const Module& orig = Module(s.value.toObject()); |
| Module cloned = orig.clone_impl(type_remap); |
| type_remap[orig.type()] = cloned.type(); |
| r.register_module(s.name, cloned); |
| } else { |
| r.register_attribute( |
| s.name, |
| s.value.type(), |
| s.value, |
| *entity_type(s.name) == EntityType::PARAMETER); |
| } |
| } |
| |
| // Clone methods remapping the types to the cloned ones. |
| for (auto& fn : type()->methods()) { |
| r.clone_method(*this, *fn, type_remap); |
| } |
| return r; |
| } |
| |
| void Module::train(bool on) { |
| for (NameModule s : get_modules()) { |
| s.module.train(on); |
| } |
| if (auto slot = find_attribute("training")) { |
| set_attribute("training", on); |
| } else { |
| TORCH_INTERNAL_ASSERT("'training' attribute not found"); |
| } |
| } |
| |
| IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const { |
| // Look up the class |
| const auto classType = |
| class_compilation_unit()->get_class(c10::QualifiedName(name)); |
| if (!classType) { |
| AT_ERROR( |
| "Could not find class with name: '", |
| name.qualifiedName(), |
| "' in module."); |
| } |
| |
| // Create a bare object with correct number of slots |
| const size_t numAttrs = classType->numAttributes(); |
| auto obj = c10::ivalue::Object::create( |
| c10::StrongTypePtr(class_compilation_unit(), classType), numAttrs); |
| |
| // Invoke the `__init__()` of the class with the arguments provided. |
| Stack stackWithSelf = {obj}; |
| for (auto& arg : stack) { |
| stackWithSelf.push_back(std::move(arg)); |
| } |
| // Note: following Python, `__init__()` modifies its first parameter in-place |
| // and returns nothing. |
| classType->getMethod("__init__")->operator()(std::move(stackWithSelf)); |
| |
| return obj; |
| } |
| |
| ivalue_list Module::get_parameters() const { |
| return ivalue_list(*this, EntityType::PARAMETER); |
| } |
| |
| ivalue_list Module::get_attributes() const { |
| return ivalue_list(*this, EntityType::ATTRIBUTE); |
| } |
| |
| ivalue_list Module::get_slots() const { |
| return ivalue_list(*this, c10::nullopt); |
| } |
| |
| module_list Module::get_modules() const { |
| return module_list(*this, EntityType::MODULE); |
| } |
| |
| c10::optional<autograd::Variable> Module::find_parameter( |
| const std::string& name) const { |
| auto slot_idx = type()->findAttributeSlot(name); |
| if (slot_idx && type()->is_parameter(*slot_idx)) { |
| return autograd::as_variable_ref( |
| module_object()->getSlot(*slot_idx).toTensor()); |
| } |
| return c10::nullopt; |
| } |
| |
| c10::optional<IValue> Module::find_attribute(const std::string& name) const { |
| auto slot_idx = type()->findAttributeSlot(name); |
| if (slot_idx && !type()->is_parameter(*slot_idx) && |
| !type()->is_module(*slot_idx)) { |
| return module_object()->getSlot(*slot_idx); |
| } |
| return c10::nullopt; |
| } |
| |
| c10::optional<autograd::Variable> Module::find_buffer( |
| const std::string& name) const { |
| auto slot_idx = type()->findAttributeSlot(name); |
| if (slot_idx && !type()->is_parameter(*slot_idx) && |
| !type()->is_module(*slot_idx) && |
| type()->getAttribute(*slot_idx)->isSubtypeOf(TensorType::get())) { |
| return autograd::as_variable_ref( |
| module_object()->getSlot(*slot_idx).toTensor()); |
| } |
| return c10::nullopt; |
| } |
| |
| c10::optional<Module> Module::find_module(const std::string& name) const { |
| auto slot_idx = type()->findAttributeSlot(name); |
| if (slot_idx && type()->is_module(*slot_idx)) { |
| return Module(module_object()->getAttr(name).toObject()); |
| } |
| return c10::nullopt; |
| } |
| |
| c10::optional<Method> Module::find_method(const std::string& basename) const { |
| for (Function* fn : type()->methods()) { |
| if (fn->name() == basename) { |
| return Method(module_object(), fn); |
| } |
| } |
| return c10::nullopt; |
| } |
| |
| void Module::apply(const std::function<void(Module&)>& fn) { |
| for (NameModule s : get_modules()) { |
| s.module.apply(fn); |
| } |
| fn(*this); |
| } |
| |
| std::string Module::dump_to_str( |
| bool print_method_bodies, |
| bool print_attr_values, |
| bool print_param_values, |
| int level = 0) const { |
| std::stringstream ss; |
| std::stringstream parameters_ss; |
| std::stringstream attributes_ss; |
| std::stringstream methods_ss; |
| std::stringstream submodules_ss; |
| |
| for (const NameValue& p : get_parameters()) { |
| parameters_ss << p.name << " = "; |
| if (print_param_values) { |
| parameters_ss << p.value.toTensor() << std::endl; |
| } else { |
| parameters_ss << "..." << std::endl; |
| } |
| } |
| |
| for (const NameValue& p : get_attributes()) { |
| attributes_ss << p.name << " = "; |
| if (!p.value.isTensor() || print_attr_values) { |
| attributes_ss << p.value << std::endl; |
| } else { |
| attributes_ss << "..." << std::endl; |
| } |
| } |
| |
| for (const Method& method : get_methods()) { |
| methods_ss << " method " << method.name() << " {" << std::endl; |
| if (print_method_bodies) { |
| methods_ss << torch::jit::jit_log_prefix( |
| " ", method.graph()->toString()) |
| << std::endl; |
| } |
| methods_ss << " }" << std::endl; |
| } |
| |
| ss << "module " << name().qualifiedName() << " {" << std::endl; |
| ss << " parameters {" << std::endl; |
| ss << torch::jit::jit_log_prefix(" ", parameters_ss.str()); |
| ss << " }" << std::endl; |
| ss << " attributes {" << std::endl; |
| ss << torch::jit::jit_log_prefix(" ", attributes_ss.str()); |
| ss << " }" << std::endl; |
| ss << " methods {" << std::endl; |
| ss << torch::jit::jit_log_prefix(" ", methods_ss.str()); |
| ss << " }" << std::endl; |
| ss << " submodules {" << std::endl; |
| for (const NameModule& s : get_modules()) { |
| // We do level + 2, because one level of indentation comes from 'submodules' |
| // scope and the other one goes from a specific submodule we're printing. |
| ss << s.module.dump_to_str( |
| print_method_bodies, print_attr_values, print_param_values, level + 2); |
| } |
| ss << " }" << std::endl; |
| ss << "}" << std::endl; |
| |
| std::string indent(2 * level, ' '); |
| return torch::jit::jit_log_prefix(indent, ss.str()); |
| } |
| |
| void Module::dump( |
| bool print_method_bodies = true, |
| bool print_attr_values = true, |
| bool print_param_values = true) const { |
| std::cout << dump_to_str( |
| print_method_bodies, |
| print_attr_values, |
| print_param_values) |
| << std::endl; |
| } |
| |
| } // namespace script |
| } // namespace jit |
| } // namespace torch |