| from __future__ import absolute_import, division, print_function, unicode_literals |
| |
| import argparse |
| import datetime |
| import re |
| import sys |
| from collections import defaultdict |
| |
| import torch |
| from torch._C import parse_schema |
| |
| |
| # The date specifies how long the allowlist exclusion should apply to. |
| # |
| # - If we NEVER give BC guarantee for an operator, you can put the |
| # date arbitrarily far in the future. |
| # - Otherwise, pick a date that is far enough in the future that you |
| # believe you can land your diff before then. |
| # |
| # Allowlist entries can be removed after the date listed on them passes. |
| # |
| # Allowlist item format: |
| # [ |
| # 0: function name regex |
| # 1: date until which the allowlist entry is valid |
| # 2: (optional) function argument regex |
| # ] |
| # |
| # NB: function name DOES NOT include overload name! |
| allow_list = [ |
| ("c10_experimental", datetime.date(2222, 1, 1)), |
| # We export some functions and classes for test_jit.py directly from libtorch.so, |
| # it's not important to have BC for them |
| ("_TorchScriptTesting.*", datetime.date(9999, 1, 1)), |
| # Internal, profiler-specific ops |
| ("profiler::_call_end_callbacks_on_jit_fut*", datetime.date(9999, 1, 1)), |
| ("profiler::_record_function_enter", datetime.date(9999, 1, 1)), |
| ("tensorexpr::Group", datetime.date(2020, 9, 9)), |
| ("aten::append*", datetime.date(2020, 4, 15)), |
| ("aten::_min", datetime.date(2020, 9, 9)), |
| ("aten::_max", datetime.date(2020, 9, 9)), |
| ("aten::amax", datetime.date(2020, 10, 9)), |
| ("aten::amin", datetime.date(2020, 10, 9)), |
| ("aten::min_values", datetime.date(2020, 10, 9)), |
| ("aten::max_values", datetime.date(2020, 10, 9)), |
| ("aten::split_with_sizes", datetime.date(2020, 7, 29)), |
| ("aten::eq", datetime.date(2020, 7, 30)), |
| ("aten::log", datetime.date(2020, 7, 30)), |
| ("aten::__and__", datetime.date(2020, 7, 30)), |
| ("aten::__or__", datetime.date(2020, 7, 30)), |
| ("aten::__xor__", datetime.date(2020, 7, 30)), |
| ("aten::add", datetime.date(2020, 7, 30)), |
| ("aten::__upsample_bilinear", datetime.date(2020, 7, 30)), |
| ("aten::hash", datetime.date(2020, 7, 30)), |
| ("aten::divmod", datetime.date(2020, 7, 30)), |
| ("aten::sorted", datetime.date(2020, 8, 30)), |
| ("aten::__contains__", datetime.date(2020, 7, 30)), |
| ("aten::ne", datetime.date(2020, 7, 30)), |
| ("aten::index", datetime.date(2020, 7, 30)), |
| ("aten::isnan", datetime.date(2020, 7, 30)), |
| ("aten::pow", datetime.date(2020, 7, 30)), |
| ("aten::atan2", datetime.date(2020, 7, 30)), |
| ("aten::copy_", datetime.date(2020, 7, 30)), |
| ("aten::sort", datetime.date(2020, 7, 30)), |
| ('aten::_convolution', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution_transpose', datetime.date(2020, 10, 15)), |
| ('aten::_convolution_double_backward', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution_backward_input', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution_backward', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution_backward_weight', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution_transpose_backward', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution_transpose_backward_input', datetime.date(2020, 10, 15)), |
| ('aten::cudnn_convolution_transpose_backward_weight', datetime.date(2020, 10, 15)), |
| ("aten::_cudnn_init_dropout_state", datetime.date(2020, 7, 30)), |
| ("aten::sparse_coo_tensor", datetime.date(2020, 7, 30)), |
| ("aten::_sparse_coo_tensor_with_dims", datetime.date(2020, 7, 30)), |
| ("aten::_sparse_coo_tensor_with_dims_and_tensors", datetime.date(2020, 7, 30)), |
| ("aten::__lshift__", datetime.date(2020, 7, 30)), |
| ("aten::__rshift__", datetime.date(2020, 7, 30)), |
| ("aten::__round_to_zero_floordiv", datetime.date(2020, 7, 30)), |
| ("aten::gcd", datetime.date(2020, 7, 30)), |
| ("aten::unflatten", datetime.date(2020, 8, 14)), |
| ("aten::linalg_outer", datetime.date(2020, 8, 30)), |
| # WARNING: overload name here doesn't do anything |
| ("aten::linalg_outer.out", datetime.date(2020, 8, 30)), |
| ("aten::_compute_linear_combination", datetime.date(2020, 9, 1)), |
| ("__getstate__", datetime.date(2020, 9, 1), "Conv[23]dPackedParams"), |
| ("aten::_foreach_add_", datetime.date(2020, 10, 1)), |
| ] |
| |
| |
| def allow_listed(schema, allow_list): |
| for item in allow_list: |
| if item[1] < datetime.date.today(): |
| continue |
| regexp = re.compile(item[0]) |
| if regexp.search(schema.name): |
| if len(item) > 2: |
| # if arguments regex is present, use it |
| regexp_args = re.compile(item[2]) |
| return bool(regexp_args.search(str(schema))) |
| return True |
| return False |
| |
| |
| def dont_parse(schema_line): |
| for item in dont_parse_list: |
| if item[1] < datetime.date.today(): |
| continue |
| regexp = re.compile(item[0]) |
| if regexp.search(schema_line): |
| return True |
| return False |
| |
| |
| def check_bc(existing_schemas): |
| new_schemas = torch._C._jit_get_all_schemas() |
| new_schemas += torch._C._jit_get_custom_class_schemas() |
| new_schema_dict = defaultdict(list) |
| for s in new_schemas: |
| new_schema_dict[s.name].append(s) |
| |
| is_bc = True |
| broken_ops = [] |
| for existing_schema in existing_schemas: |
| if allow_listed(existing_schema, allow_list): |
| print("schema: ", str(existing_schema), " found on allowlist, skipping") |
| continue |
| print("processing existing schema: ", str(existing_schema)) |
| matching_new_schemas = new_schema_dict.get(existing_schema.name, []) |
| found = False |
| for matching_new_schema in matching_new_schemas: |
| if matching_new_schema.is_backward_compatible_with(existing_schema): |
| found = True |
| break |
| if not found: |
| print( |
| "Can NOT find backward compatible schemas after changes " |
| "for schema {} from the following candidates:\n[\n{}\n]".format( |
| str(existing_schema), |
| "\n\t".join(str(s) for s in matching_new_schemas), |
| ) |
| ) |
| # TODO Print out more details about why candidates don't match. |
| broken_ops.append(str(existing_schema)) |
| is_bc = False |
| if is_bc: |
| print("Found backward compatible schemas for all existing schemas") |
| else: |
| print( |
| "The PR is introducing backward incompatible changes to the " |
| "operator library. Please contact PyTorch team to confirm " |
| "whether this change is wanted or not. \n\nBroken ops: " |
| "[\n\t{}\n]".format("\n\t".join(broken_ops)) |
| ) |
| return is_bc |
| |
| |
| if __name__ == "__main__": |
| parser = argparse.ArgumentParser(description="Process some integers.") |
| parser.add_argument( |
| "--existing-schemas", |
| help="filename to load existing schemas", |
| type=str, |
| default="schemas.txt", |
| ) |
| args = parser.parse_args() |
| existing_schema_dict = dict() |
| slist = [] |
| with open(args.existing_schemas, "r") as f: |
| while True: |
| line = f.readline() |
| if not line: |
| break |
| s = parse_schema(line.strip()) |
| slist.append(s) |
| |
| if not check_bc(slist): |
| sys.exit(1) |