blob: 2fc7ba6fa2ae4c6104ab54647429685a19707370 [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import datetime
import re
import sys
from collections import defaultdict
import torch
from torch._C import parse_schema
# The date specifies how long the allowlist exclusion should apply to.
#
# - If we NEVER give BC guarantee for an operator, you can put the
# date arbitrarily far in the future.
# - Otherwise, pick a date that is far enough in the future that you
# believe you can land your diff before then.
#
# Allowlist entries can be removed after the date listed on them passes.
#
# Allowlist item format:
# [
# 0: function name regex
# 1: date until which the allowlist entry is valid
# 2: (optional) function argument regex
# ]
#
# NB: function name DOES NOT include overload name!
allow_list = [
("c10_experimental", datetime.date(2222, 1, 1)),
# We export some functions and classes for test_jit.py directly from libtorch.so,
# it's not important to have BC for them
("_TorchScriptTesting.*", datetime.date(9999, 1, 1)),
# Internal, profiler-specific ops
("profiler::_call_end_callbacks_on_jit_fut*", datetime.date(9999, 1, 1)),
("profiler::_record_function_enter", datetime.date(9999, 1, 1)),
("tensorexpr::Group", datetime.date(2020, 9, 9)),
("aten::append*", datetime.date(2020, 4, 15)),
("aten::_min", datetime.date(2020, 9, 9)),
("aten::_max", datetime.date(2020, 9, 9)),
("aten::amax", datetime.date(2020, 10, 9)),
("aten::amin", datetime.date(2020, 10, 9)),
("aten::min_values", datetime.date(2020, 10, 9)),
("aten::max_values", datetime.date(2020, 10, 9)),
("aten::split_with_sizes", datetime.date(2020, 7, 29)),
("aten::eq", datetime.date(2020, 7, 30)),
("aten::log", datetime.date(2020, 7, 30)),
("aten::__and__", datetime.date(2020, 7, 30)),
("aten::__or__", datetime.date(2020, 7, 30)),
("aten::__xor__", datetime.date(2020, 7, 30)),
("aten::add", datetime.date(2020, 7, 30)),
("aten::__upsample_bilinear", datetime.date(2020, 7, 30)),
("aten::hash", datetime.date(2020, 7, 30)),
("aten::divmod", datetime.date(2020, 7, 30)),
("aten::sorted", datetime.date(2020, 8, 30)),
("aten::__contains__", datetime.date(2020, 7, 30)),
("aten::ne", datetime.date(2020, 7, 30)),
("aten::index", datetime.date(2020, 7, 30)),
("aten::isnan", datetime.date(2020, 7, 30)),
("aten::pow", datetime.date(2020, 7, 30)),
("aten::atan2", datetime.date(2020, 7, 30)),
("aten::copy_", datetime.date(2020, 7, 30)),
("aten::sort", datetime.date(2020, 7, 30)),
('aten::_convolution', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution_transpose', datetime.date(2020, 10, 15)),
('aten::_convolution_double_backward', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution_backward_input', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution_backward', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution_backward_weight', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution_transpose_backward', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution_transpose_backward_input', datetime.date(2020, 10, 15)),
('aten::cudnn_convolution_transpose_backward_weight', datetime.date(2020, 10, 15)),
("aten::_cudnn_init_dropout_state", datetime.date(2020, 7, 30)),
("aten::sparse_coo_tensor", datetime.date(2020, 7, 30)),
("aten::_sparse_coo_tensor_with_dims", datetime.date(2020, 7, 30)),
("aten::_sparse_coo_tensor_with_dims_and_tensors", datetime.date(2020, 7, 30)),
("aten::__lshift__", datetime.date(2020, 7, 30)),
("aten::__rshift__", datetime.date(2020, 7, 30)),
("aten::__round_to_zero_floordiv", datetime.date(2020, 7, 30)),
("aten::gcd", datetime.date(2020, 7, 30)),
("aten::unflatten", datetime.date(2020, 8, 14)),
("aten::linalg_outer", datetime.date(2020, 8, 30)),
# WARNING: overload name here doesn't do anything
("aten::linalg_outer.out", datetime.date(2020, 8, 30)),
("aten::_compute_linear_combination", datetime.date(2020, 9, 1)),
("__getstate__", datetime.date(2020, 9, 1), "Conv[23]dPackedParams"),
("aten::_foreach_add_", datetime.date(2020, 10, 1)),
]
def allow_listed(schema, allow_list):
for item in allow_list:
if item[1] < datetime.date.today():
continue
regexp = re.compile(item[0])
if regexp.search(schema.name):
if len(item) > 2:
# if arguments regex is present, use it
regexp_args = re.compile(item[2])
return bool(regexp_args.search(str(schema)))
return True
return False
def dont_parse(schema_line):
for item in dont_parse_list:
if item[1] < datetime.date.today():
continue
regexp = re.compile(item[0])
if regexp.search(schema_line):
return True
return False
def check_bc(existing_schemas):
new_schemas = torch._C._jit_get_all_schemas()
new_schemas += torch._C._jit_get_custom_class_schemas()
new_schema_dict = defaultdict(list)
for s in new_schemas:
new_schema_dict[s.name].append(s)
is_bc = True
broken_ops = []
for existing_schema in existing_schemas:
if allow_listed(existing_schema, allow_list):
print("schema: ", str(existing_schema), " found on allowlist, skipping")
continue
print("processing existing schema: ", str(existing_schema))
matching_new_schemas = new_schema_dict.get(existing_schema.name, [])
found = False
for matching_new_schema in matching_new_schemas:
if matching_new_schema.is_backward_compatible_with(existing_schema):
found = True
break
if not found:
print(
"Can NOT find backward compatible schemas after changes "
"for schema {} from the following candidates:\n[\n{}\n]".format(
str(existing_schema),
"\n\t".join(str(s) for s in matching_new_schemas),
)
)
# TODO Print out more details about why candidates don't match.
broken_ops.append(str(existing_schema))
is_bc = False
if is_bc:
print("Found backward compatible schemas for all existing schemas")
else:
print(
"The PR is introducing backward incompatible changes to the "
"operator library. Please contact PyTorch team to confirm "
"whether this change is wanted or not. \n\nBroken ops: "
"[\n\t{}\n]".format("\n\t".join(broken_ops))
)
return is_bc
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument(
"--existing-schemas",
help="filename to load existing schemas",
type=str,
default="schemas.txt",
)
args = parser.parse_args()
existing_schema_dict = dict()
slist = []
with open(args.existing_schemas, "r") as f:
while True:
line = f.readline()
if not line:
break
s = parse_schema(line.strip())
slist.append(s)
if not check_bc(slist):
sys.exit(1)