| """Adds docstrings to functions defined in the torch._C""" |
| |
| import torch._C |
| from torch._C import _add_docstr as add_docstr |
| |
| add_docstr(torch.abs, |
| r""" |
| abs(input, out=None) -> Tensor |
| |
| Computes the element-wise absolute value of the given :attr:`input` tensor. |
| |
| .. math:: |
| \text{out}_{i} = |\text{input}_{i}| |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.abs(torch.FloatTensor([-1, -2, 3])) |
| |
| 1 |
| 2 |
| 3 |
| [torch.FloatTensor of size (3,)] |
| |
| """) |
| |
| add_docstr(torch.acos, |
| r""" |
| acos(input, out=None) -> Tensor |
| |
| Returns a new tensor with the arccosine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cos^{-1}(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.acos(a) |
| |
| 2.2608 |
| 1.2956 |
| 1.1075 |
| nan |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.add, |
| r""" |
| .. function:: add(input, value, out=None) |
| |
| Adds the scalar :attr:`value` to each element of the input :attr:`input` |
| and returns a new resulting tensor. |
| |
| .. math:: |
| out = input + value |
| |
| If :attr:`input` is of type FloatTensor or DoubleTensor, :attr:`value` must be |
| a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): the number to be added to each element of :attr:`input` |
| |
| Keyword arguments: |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 0.4050 |
| -1.2227 |
| 1.8688 |
| -0.4185 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.add(a, 20) |
| |
| 20.4050 |
| 18.7773 |
| 21.8688 |
| 19.5815 |
| [torch.FloatTensor of size (4,)] |
| |
| |
| |
| .. function:: add(input, value=1, other, out=None) |
| |
| Each element of the tensor :attr:`other` is multiplied by the scalar |
| :attr:`value` and added to each element of the tensor :attr:`input`. |
| The resulting tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| out = input + value \times other |
| |
| If :attr:`other` is of type FloatTensor or DoubleTensor, :attr:`value` must be |
| a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the first input tensor |
| value (Number): the scalar multiplier for :attr:`other` |
| other (Tensor): the second input tensor |
| |
| Keyword arguments: |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> import torch |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.9310 |
| 2.0330 |
| 0.0852 |
| -0.2941 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> b = torch.randn(2, 2) |
| >>> b |
| |
| 1.0663 0.2544 |
| -0.1513 0.0749 |
| [torch.FloatTensor of size (2,2)] |
| |
| >>> torch.add(a, 10, b) |
| 9.7322 |
| 4.5770 |
| -1.4279 |
| 0.4552 |
| [torch.FloatTensor of size (4,)] |
| |
| |
| """) |
| |
| add_docstr(torch.addbmm, |
| r""" |
| addbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored |
| in :attr:`batch1` and :attr:`batch2`, |
| with a reduced add step (all matrix multiplications get accumulated |
| along the first dimension). |
| :attr:`mat` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the |
| same number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor |
| and :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| .. math:: |
| out = \beta\ mat + \alpha\ (\sum_{i=0}^{b} batch1_i \mathbin{@} batch2_i) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` |
| must be real numbers, otherwise they should be integers. |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): matrix to be added |
| alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.addbmm(M, batch1, batch2) |
| |
| -3.1162 11.0071 7.3102 0.1824 -7.6892 |
| 1.8265 6.0739 0.4589 -0.5641 -5.4283 |
| -9.3387 -0.1794 -1.2318 -6.8841 -4.7239 |
| [torch.FloatTensor of size (3,5)] |
| """) |
| |
| add_docstr(torch.addcdiv, |
| r""" |
| addcdiv(tensor, value=1, tensor1, tensor2, out=None) -> Tensor |
| |
| Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, |
| multiply the result by the scalar :attr:`value` and add it to :attr:`tensor`. |
| |
| .. math:: |
| out_i = tensor_i + value \times \frac{tensor1_i}{tensor2_i} |
| |
| The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be |
| a real number, otherwise an integer. |
| |
| Args: |
| tensor (Tensor): the tensor to be added |
| value (Number, optional): multiplier for :math:`tensor1 ./ tensor2` |
| tensor1 (Tensor): the numerator tensor |
| tensor2 (Tensor): the denominator tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> t = torch.randn(2, 3) |
| >>> t1 = torch.randn(1, 6) |
| >>> t2 = torch.randn(6, 1) |
| >>> torch.addcdiv(t, 0.1, t1, t2) |
| |
| 0.0122 -0.0188 -0.2354 |
| 0.7396 -1.5721 1.2878 |
| [torch.FloatTensor of size (2,3)] |
| """) |
| |
| add_docstr(torch.addcmul, |
| r""" |
| addcmul(tensor, value=1, tensor1, tensor2, out=None) -> Tensor |
| |
| Performs the element-wise multiplication of :attr:`tensor1` |
| by :attr:`tensor2`, multiply the result by the scalar :attr:`value` |
| and add it to :attr:`tensor`. |
| |
| .. math:: |
| out_i = tensor_i + value \times tensor1_i \times tensor2_i |
| |
| The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be |
| a real number, otherwise an integer. |
| |
| Args: |
| tensor (Tensor): the tensor to be added |
| value (Number, optional): multiplier for :math:`tensor1 .* tensor2` |
| tensor1 (Tensor): the tensor to be multiplied |
| tensor2 (Tensor): the tensor to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> t = torch.randn(2, 3) |
| >>> t1 = torch.randn(1, 6) |
| >>> t2 = torch.randn(6, 1) |
| >>> torch.addcmul(t, 0.1, t1, t2) |
| |
| 0.0122 -0.0188 -0.2354 |
| 0.7396 -1.5721 1.2878 |
| [torch.FloatTensor of size (2,3)] |
| """) |
| |
| add_docstr(torch.addmm, |
| r""" |
| addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. |
| The matrix :attr:`mat` is added to the final result. |
| |
| If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a |
| :math:`(m \times p)` tensor, then :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor |
| and :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between |
| :attr:`mat1` and :attr`mat2` and the added matrix :attr:`mat` respectively. |
| |
| .. math:: |
| out = \beta\ mat + \alpha\ (mat1_i \mathbin{@} mat2_i) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers. |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): matrix to be added |
| alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
| mat1 (Tensor): the first matrix to be multiplied |
| mat2 (Tensor): the second matrix to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(2, 3) |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.addmm(M, mat1, mat2) |
| |
| -0.4095 -1.9703 1.3561 |
| 5.7674 -4.9760 2.7378 |
| [torch.FloatTensor of size (2,3)] |
| """) |
| |
| add_docstr(torch.addmv, |
| r""" |
| addmv(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`mat` and |
| the vector :attr:`vec`. |
| The vector :attr:`tensor` is added to the final result. |
| |
| If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of |
| size `m`, then :attr:`tensor` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and |
| :attr:`out` will be 1-D tensor of size `n`. |
| |
| :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between |
| :attr:`mat` and :attr:`vec` and the added tensor :attr:`tensor` respectively. |
| |
| .. math:: |
| out = \beta\ tensor + \alpha\ (mat \mathbin{@} vec) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`tensor` (:math:`\beta`) |
| tensor (Tensor): vector to be added |
| alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) |
| mat (Tensor): matrix to be multiplied |
| vec (Tensor): vector to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(2) |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.addmv(M, mat, vec) |
| |
| -2.0939 |
| -2.2950 |
| [torch.FloatTensor of size (2,)] |
| """) |
| |
| add_docstr(torch.addr, |
| r""" |
| addr(beta=1, mat, alpha=1, vec1, vec2, out=None) -> Tensor |
| |
| Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` |
| and adds it to the matrix :attr:`mat`. |
| |
| Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the |
| outer product between :attr:`vec1` and :attr:`vec2` and the added matrix |
| :attr:`mat` respectively. |
| |
| .. math:: |
| out = \beta\ mat + \alpha\ (vec1 \otimes vec2) |
| |
| If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector |
| of size `m`, then :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a matrix of size |
| :math:`(n \times m)` and :attr:`out` will be a matrix of size |
| :math:`(n \times m)`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): matrix to be added |
| alpha (Number, optional): multiplier for :math:`vec1 \otimes vec2` (:math:`\alpha`) |
| vec1 (Tensor): the first vector of the outer product |
| vec2 (Tensor): the second vector of the outer product |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> vec1 = torch.arange(1, 4) |
| >>> vec2 = torch.arange(1, 3) |
| >>> M = torch.zeros(3, 2) |
| >>> torch.addr(M, vec1, vec2) |
| |
| 1 2 |
| 2 4 |
| 3 6 |
| [torch.FloatTensor of size (3,2)] |
| """) |
| |
| add_docstr(torch.asin, |
| r""" |
| asin(input, out=None) -> Tensor |
| |
| Returns a new tensor with the arcsine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sin^{-1}(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.asin(a) |
| |
| -0.6900 |
| 0.2752 |
| 0.4633 |
| nan |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.atan, |
| r""" |
| atan(input, out=None) -> Tensor |
| |
| Returns a new tensor with the arctangent of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tan^{-1}(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.atan(a) |
| |
| -0.5669 |
| 0.2653 |
| 0.4203 |
| 0.9196 |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.atan2, |
| r""" |
| atan2(input1, input2, out=None) -> Tensor |
| |
| Returns a new tensor with the arctangent of the elements of :attr:`input1` |
| and :attr:`input2`. |
| |
| The shapes of :attr:`input1` and :attr:`input2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input1 (Tensor): the first input tensor |
| input2 (Tensor): the second input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.atan2(a, torch.randn(4)) |
| |
| -2.4167 |
| 2.9755 |
| 0.9363 |
| 1.6613 |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.baddbmm, |
| r""" |
| baddbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices in :attr:`batch1` |
| and :attr:`batch2`. |
| :attr:`mat` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same |
| number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, then :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a |
| :math:`(b \times n \times p)` tensor and :attr:`out` will be a |
| :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the |
| same as the scaling factors used in :meth:`torch.addbmm`. |
| |
| .. math:: |
| out_i = \beta\ mat_i + \alpha\ (batch1_i \mathbin{@} batch2_i) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers. |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): the tensor to be added |
| alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(10, 3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.baddbmm(M, batch1, batch2).size() |
| torch.Size([10, 3, 5]) |
| """) |
| |
| add_docstr(torch.bernoulli, |
| r""" |
| bernoulli(input, out=None) -> Tensor |
| |
| Draws binary random numbers (0 or 1) from a Bernoulli distribution. |
| |
| The :attr:`input` tensor should be a tensor containing probabilities |
| to be used for drawing the binary random number. |
| Hence, all values in :attr:`input` have to be in the range: |
| :math:`0 \leq \text{input}_i \leq 1`. |
| |
| The :math:`\text{i}^{th}` element of the output tensor will draw a |
| value `1` according to the :math:`\text{i}^{th}` probability value given |
| in :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) |
| |
| The returned :attr:`out` tensor only has values 0 or 1 and is of the same |
| shape as :attr:`input` |
| |
| Args: |
| input (Tensor): the input tensor of probability values for the Bernoulli distribution |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.Tensor(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] |
| >>> a |
| |
| 0.7544 0.8140 0.9842 |
| 0.5282 0.0595 0.6445 |
| 0.1925 0.9553 0.9732 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.bernoulli(a) |
| |
| 1 1 1 |
| 0 0 1 |
| 0 1 1 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 |
| >>> torch.bernoulli(a) |
| |
| 1 1 1 |
| 1 1 1 |
| 1 1 1 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 |
| >>> torch.bernoulli(a) |
| |
| 0 0 0 |
| 0 0 0 |
| 0 0 0 |
| [torch.FloatTensor of size (3,3)] |
| |
| """) |
| |
| add_docstr(torch.bmm, |
| r""" |
| bmm(batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` |
| and :attr:`batch2`. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing |
| the same number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, :attr:`out` will be a |
| :math:`(b \times n \times p)` tensor. |
| |
| .. math:: |
| out_i = batch1_i \mathbin{@} batch2_i |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| For broadcasting matrix products, see :func:`torch.matmul`. |
| |
| Args: |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> res = torch.bmm(batch1, batch2) |
| >>> res.size() |
| torch.Size([10, 3, 5]) |
| """) |
| |
| add_docstr(torch.stack, |
| r""" |
| stack(seq, dim=0, out=None) -> Tensor |
| |
| Concatenates sequence of tensors along a new dimension. |
| |
| All tensors need to be of the same size. |
| |
| Arguments: |
| seq (sequence of Tensors): sequence of tensors to concatenate |
| dim (int): dimension to insert. Has to be between 0 and the number |
| of dimensions of concatenated tensors (inclusive) |
| out (Tensor, optional): the output tensor |
| """) |
| |
| add_docstr(torch.chunk, |
| r""" |
| chunk(tensor, chunks, dim=0) -> List of Tensors |
| |
| Splits a tensor into a specific number of chunks. |
| |
| Last chunk will be smaller if the tensor size along the given dimension |
| :attr:`dim` is not divisible by :attr:`chunks`. |
| |
| Arguments: |
| tensor (Tensor): the tensor to split |
| chunks (int): number of chunks to return |
| dim (int): dimension along which to split the tensor |
| """) |
| |
| add_docstr(torch.cat, |
| r""" |
| cat(seq, dim=0, out=None) -> Tensor |
| |
| Concatenates the given sequence of :attr:`seq` tensors in the given dimension. |
| All tensors must either have the same shape (except in the concatenating |
| dimension) or be empty. |
| |
| :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` |
| and :func:`torch.chunk`. |
| |
| :func:`torch.cat` can be best understood via examples. |
| |
| Args: |
| seq (sequence of Tensors): any python sequence of tensors of the same type. |
| Non-empty tensors provided must have the same shape, except in the |
| cat dimension. |
| dim (int, optional): the dimension over which the tensors are concatenated |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> torch.cat((x, x, x), 0) |
| |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size (6,3)] |
| |
| >>> torch.cat((x, x, x), 1) |
| |
| 0.5983 -0.0341 2.4918 0.5983 -0.0341 2.4918 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 1.5981 -0.5265 -0.8735 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size (2,9)] |
| |
| """) |
| |
| add_docstr(torch.ceil, |
| r""" |
| ceil(input, out=None) -> Tensor |
| |
| Returns a new tensor with the ceil of the elements of :attr:`input`, |
| the smallest integer greater than or equal to each element. |
| |
| .. math:: |
| \text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil = \left\lfloor \text{input}_{i} \right\rfloor + 1 |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.ceil(a) |
| |
| 2 |
| 1 |
| -0 |
| -0 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.reciprocal, |
| r""" |
| reciprocal(input, out=None) -> Tensor |
| |
| Returns a new tensor with the reciprocal of the elements of :attr:`input` |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{\text{input}_{i}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.reciprocal(a) |
| |
| 0.7210 |
| 2.5565 |
| -1.1583 |
| -1.8289 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.clamp, |
| r""" |
| clamp(input, min, max, out=None) -> Tensor |
| |
| Clamp all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]` and return |
| a resulting tensor: |
| |
| .. math:: |
| y_i = \begin{cases} |
| \text{min} & \text{if } x_i < \text{min} \\ |
| x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\ |
| \text{max} & \text{if } x_i > \text{max} |
| \end{cases} |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, args :attr:`min` |
| and :attr:`max` must be real numbers, otherwise they should be integers. |
| |
| Args: |
| input (Tensor): the input tensor |
| min (Number): lower-bound of the range to be clamped to |
| max (Number): upper-bound of the range to be clamped to |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.clamp(a, min=-0.5, max=0.5) |
| |
| 0.5000 |
| 0.3912 |
| -0.5000 |
| -0.5000 |
| [torch.FloatTensor of size (4,)] |
| |
| .. function:: clamp(input, *, min, out=None) -> Tensor |
| |
| Clamps all elements in :attr:`input` to be larger or equal :attr:`min`. |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): minimal value of each element in the output |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.clamp(a, min=0.5) |
| |
| 1.3869 |
| 0.5000 |
| 0.5000 |
| 0.5000 |
| [torch.FloatTensor of size (4,)] |
| |
| .. function:: clamp(input, *, max, out=None) -> Tensor |
| |
| Clamps all elements in :attr:`input` to be smaller or equal :attr:`max`. |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): maximal value of each element in the output |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.clamp(a, max=0.5) |
| |
| 0.5000 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.cos, |
| r""" |
| cos(input, out=None) -> Tensor |
| |
| Returns a new tensor with the cosine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cos(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.cos(a) |
| 0.8041 |
| 0.9633 |
| 0.9018 |
| 0.2557 |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.cosh, |
| r""" |
| cosh(input, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic cosine of the elements of |
| :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cosh(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.cosh(a) |
| 1.2095 |
| 1.0372 |
| 1.1015 |
| 1.9917 |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.cross, |
| r""" |
| cross(input, other, dim=-1, out=None) -> Tensor |
| |
| |
| Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input` |
| and :attr:`other`. |
| |
| :attr:`input` and :attr:`other` must have the same size, and the size of their |
| :attr:`dim` dimension should be 3. |
| |
| If :attr:`dim` is not given, it defaults to the first dimension found with the |
| size 3. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the second input tensor |
| dim (int, optional): the dimension to take the cross-product in. |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 3) |
| >>> a |
| |
| -0.6652 -1.0116 -0.6857 |
| 0.2286 0.4446 -0.5272 |
| 0.0476 0.2321 1.9991 |
| 0.6199 1.1924 -0.9397 |
| [torch.FloatTensor of size (4,3)] |
| |
| >>> b = torch.randn(4, 3) |
| >>> b |
| |
| -0.1042 -1.1156 0.1947 |
| 0.9947 0.1149 0.4701 |
| -1.0108 0.8319 -0.0750 |
| 0.9045 -1.3754 1.0976 |
| [torch.FloatTensor of size (4,3)] |
| |
| >>> torch.cross(a, b, dim=1) |
| |
| -0.9619 0.2009 0.6367 |
| 0.2696 -0.6318 -0.4160 |
| -1.6805 -2.0171 0.2741 |
| 0.0163 -1.5304 -1.9311 |
| [torch.FloatTensor of size (4,3)] |
| |
| >>> torch.cross(a, b) |
| |
| -0.9619 0.2009 0.6367 |
| 0.2696 -0.6318 -0.4160 |
| -1.6805 -2.0171 0.2741 |
| 0.0163 -1.5304 -1.9311 |
| [torch.FloatTensor of size (4,3)] |
| """) |
| |
| add_docstr(torch.cumprod, |
| r""" |
| cumprod(input, dim, out=None) -> Tensor |
| |
| Returns the cumulative product of elements of :attr:`input` in the dimension |
| :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be |
| a vector of size N, with elements. |
| |
| .. math:: |
| y_i = x_1 \times x_2\times x_3\times \dots \times x_i |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to do the operation over |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| |
| 1.1148 |
| 1.8423 |
| 1.4143 |
| -0.4403 |
| 1.2859 |
| -1.2514 |
| -0.4748 |
| 1.1735 |
| -1.6332 |
| -0.4272 |
| [torch.FloatTensor of size (10,)] |
| |
| >>> torch.cumprod(a, dim=0) |
| |
| 1.1148 |
| 2.0537 |
| 2.9045 |
| -1.2788 |
| -1.6444 |
| 2.0578 |
| -0.9770 |
| -1.1466 |
| 1.8726 |
| -0.8000 |
| [torch.FloatTensor of size (10,)] |
| |
| >>> a[5] = 0.0 |
| >>> torch.cumprod(a, dim=0) |
| |
| 1.1148 |
| 2.0537 |
| 2.9045 |
| -1.2788 |
| -1.6444 |
| -0.0000 |
| 0.0000 |
| 0.0000 |
| -0.0000 |
| 0.0000 |
| [torch.FloatTensor of size (10,)] |
| |
| """) |
| |
| add_docstr(torch.cumsum, |
| r""" |
| cumsum(input, dim, out=None) -> Tensor |
| |
| Returns the cumulative sum of elements of :attr:`input` in the dimension |
| :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be |
| a vector of size N, with elements. |
| |
| .. math:: |
| y_i = x_1 + x_2 + x_3 + \dots + x_i |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to do the operation over |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| |
| -0.6039 |
| -0.2214 |
| -0.3705 |
| -0.0169 |
| 1.3415 |
| -0.1230 |
| 0.9719 |
| 0.6081 |
| -0.1286 |
| 1.0947 |
| [torch.FloatTensor of size (10,)] |
| |
| >>> torch.cumsum(a, dim=0) |
| |
| -0.6039 |
| -0.8253 |
| -1.1958 |
| -1.2127 |
| 0.1288 |
| 0.0058 |
| 0.9777 |
| 1.5858 |
| 1.4572 |
| 2.5519 |
| [torch.FloatTensor of size (10,)] |
| |
| |
| """) |
| |
| add_docstr(torch.diag, |
| r""" |
| diag(input, diagonal=0, out=None) -> Tensor |
| |
| - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor |
| with the elements of :attr:`input` as the diagonal. |
| - If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with |
| the diagonal elements of :attr:`input`. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider: |
| |
| - If :attr:`diagonal` = 0, it is the main diagonal. |
| - If :attr:`diagonal` > 0, it is above the main diagonal. |
| - If :attr:`diagonal` < 0, it is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input tensor |
| diagonal (int, optional): the diagonal to consider |
| out (Tensor, optional): the output tensor |
| |
| .. seealso:: |
| |
| :func:`torch.diagonal` always returns the diagonal of its input. |
| |
| :func:`torch.diagflat` always constructs a tensor with diagonal elements |
| specified by the input. |
| |
| Examples: |
| |
| Get the square matrix where the input vector is the diagonal:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| |
| 1.0480 |
| -2.3405 |
| -1.1138 |
| [torch.FloatTensor of size (3,)] |
| |
| >>> torch.diag(a) |
| |
| 1.0480 0.0000 0.0000 |
| 0.0000 -2.3405 0.0000 |
| 0.0000 0.0000 -1.1138 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.diag(a, 1) |
| |
| 0.0000 1.0480 0.0000 0.0000 |
| 0.0000 0.0000 -2.3405 0.0000 |
| 0.0000 0.0000 0.0000 -1.1138 |
| 0.0000 0.0000 0.0000 0.0000 |
| [torch.FloatTensor of size (4,4)] |
| |
| |
| Get the k-th diagonal of a given matrix:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| |
| -1.5328 -1.3210 -1.5204 |
| 0.8596 0.0471 -0.2239 |
| -0.6617 0.0146 -1.0817 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.diag(a, 0) |
| |
| -1.5328 |
| 0.0471 |
| -1.0817 |
| [torch.FloatTensor of size (3,)] |
| |
| >>> torch.diag(a, 1) |
| |
| -1.3210 |
| -0.2239 |
| [torch.FloatTensor of size (2,)] |
| |
| """) |
| |
| add_docstr(torch.diagflat, |
| r""" |
| diagflat(input, diagonal=0) -> Tensor |
| |
| - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor |
| with the elements of :attr:`input` as the diagonal. |
| - If :attr:`input` is a tensor with more than one dimension, then returns a |
| 2-D tensor with diagonal elements equal to a flattened :attr:`input`. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input tensor |
| offset (int, optional): the diagonal to consider. Default: 0 (main |
| diagonal). |
| |
| Examples:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| |
| 1.0480 |
| -2.3405 |
| -1.1138 |
| [torch.FloatTensor of size 3] |
| |
| >>> torch.diagflat(a) |
| |
| 1.0480 0.0000 0.0000 |
| 0.0000 -2.3405 0.0000 |
| 0.0000 0.0000 -1.1138 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.diagflat(a, 1) |
| |
| 0.0000 1.0480 0.0000 0.0000 |
| 0.0000 0.0000 -2.3405 0.0000 |
| 0.0000 0.0000 0.0000 -1.1138 |
| 0.0000 0.0000 0.0000 0.0000 |
| [torch.FloatTensor of size 4x4] |
| |
| >>> a = torch.randn(2, 2) |
| >>> a |
| |
| 0.1761 -0.9121 |
| -0.5722 1.5219 |
| [torch.FloatTensor of size (2,2)] |
| |
| >>> torch.diagflat(a) |
| |
| 0.1761 0.0000 0.0000 0.0000 |
| 0.0000 -0.9121 0.0000 0.0000 |
| 0.0000 0.0000 -0.5722 0.0000 |
| 0.0000 0.0000 0.0000 1.5219 |
| [torch.FloatTensor of size (4,4)] |
| |
| """) |
| |
| add_docstr(torch.diagonal, |
| r""" |
| diagonal(input, offset=0) -> Tensor |
| |
| Returns a 1-D tensor with the diagonal elements of :attr:`input`. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input tensor. Must be 2-dimensional. |
| offset (int, optional): which diagonal to consider. Default: 0 |
| (main diagonal). |
| |
| Examples:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| |
| -1.5328 -1.3210 -1.5204 |
| 0.8596 0.0471 -0.2239 |
| -0.6617 0.0146 -1.0817 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.diagonal(a, 0) |
| |
| -1.5328 |
| 0.0471 |
| -1.0817 |
| [torch.FloatTensor of size 3] |
| |
| >>> torch.diagonal(a, 1) |
| |
| -1.3210 |
| -0.2239 |
| [torch.FloatTensor of size 2] |
| |
| """) |
| |
| add_docstr(torch.dist, |
| r""" |
| dist(input, other, p=2) -> Tensor |
| |
| Returns the p-norm of (:attr:`input` - :attr:`other`) |
| |
| The shapes of :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the Right-hand-side input tensor |
| p (float, optional): the norm to be computed |
| |
| Example:: |
| |
| >>> x = torch.randn(4) |
| >>> x |
| |
| -1.5474 |
| -0.4649 |
| 0.5954 |
| -0.8610 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> y = torch.randn(4) |
| >>> y |
| |
| 1.7141 |
| 0.3274 |
| -1.2772 |
| -0.4725 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.dist(x, y, 3.5) |
| |
| 3.3953 |
| [torch.FloatTensor of size ()] |
| |
| >>> torch.dist(x, y, 3) |
| |
| 3.4710 |
| [torch.FloatTensor of size ()] |
| |
| >>> torch.dist(x, y, 0) |
| |
| inf |
| [torch.FloatTensor of size ()] |
| |
| >>> torch.dist(x, y, 1) |
| |
| 6.3150 |
| [torch.FloatTensor of size ()] |
| |
| |
| """) |
| |
| add_docstr(torch.div, |
| r""" |
| .. function:: div(input, value, out=None) -> Tensor |
| |
| Divides each element of the input :attr:`input` with the scalar :attr:`value` |
| and returns a new resulting tensor. |
| |
| .. math:: |
| out_i = \frac{input_i}{value} |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): the number to be divided to each element of :attr:`input` |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.6147 |
| -1.1237 |
| -0.1604 |
| -0.6853 |
| 0.1063 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.div(a, 0.5) |
| |
| -1.2294 |
| -2.2474 |
| -0.3208 |
| -1.3706 |
| 0.2126 |
| [torch.FloatTensor of size (5,)] |
| |
| |
| .. function:: div(input, other, out=None) -> Tensor |
| |
| Each element of the tensor :attr:`input` is divided by each element |
| of the tensor :attr:`other`. The resulting tensor is returned. The shapes of |
| :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| out_i = \frac{input_i}{other_i} |
| |
| Args: |
| input (Tensor): the numerator tensor |
| other (Tensor): the denominator tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -0.1810 0.4017 0.2863 -0.1013 |
| 0.6183 2.0696 0.9012 -1.5933 |
| 0.5679 0.4743 -0.0117 -0.1266 |
| -0.1213 0.9629 0.2682 1.5968 |
| [torch.FloatTensor of size (4,4)] |
| |
| >>> b = torch.randn(8, 2) |
| >>> b |
| |
| 0.8774 0.7650 |
| 0.8866 1.4805 |
| -0.6490 1.1172 |
| 1.4259 -0.8146 |
| 1.4633 -0.1228 |
| 0.4643 -0.6029 |
| 0.3492 1.5270 |
| 1.6103 -0.6291 |
| [torch.FloatTensor of size (8,2)] |
| |
| >>> torch.div(a, b) |
| |
| -0.2062 0.5251 0.3229 -0.0684 |
| -0.9528 1.8525 0.6320 1.9559 |
| 0.3881 -3.8625 -0.0253 0.2099 |
| -0.3473 0.6306 0.1666 -2.5381 |
| [torch.FloatTensor of size (4,4)] |
| |
| |
| """) |
| |
| add_docstr(torch.dot, |
| r""" |
| dot(tensor1, tensor2) -> Tensor |
| |
| Computes the dot product (inner product) of two tensors. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Example:: |
| |
| >>> torch.dot(torch.Tensor([2, 3]), torch.Tensor([2, 1])) |
| |
| 7 |
| [torch.FloatTensor of size ()] |
| """) |
| |
| add_docstr(torch.eig, |
| r""" |
| eig(a, eigenvectors=False, out=None) -> (Tensor, Tensor) |
| |
| Computes the eigenvalues and eigenvectors of a real square matrix. |
| |
| Args: |
| a (Tensor): the square matrix for which the eigenvalues and eigenvectors will be computed |
| eigenvectors (bool): ``True`` to compute both eigenvalues and eigenvectors; |
| otherwise, only eigenvalues will be computed |
| out (tuple, optional): the output tensors |
| |
| Returns: |
| (Tensor, Tensor): A tuple containing |
| |
| - **e** (*Tensor*): the right eigenvalues of ``a`` |
| - **v** (*Tensor*): the eigenvectors of ``a`` if ``eigenvectors`` is ``True``; otherwise an empty tensor |
| """) |
| |
| add_docstr(torch.eq, |
| r""" |
| eq(input, other, out=None) -> Tensor |
| |
| Computes element-wise equality |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor. Must be a `ByteTensor` or the same type as `input`. |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.eq(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| |
| 1 0 |
| 0 1 |
| [torch.ByteTensor of size (2,2)] |
| """) |
| |
| add_docstr(torch.equal, |
| r""" |
| equal(tensor1, tensor2) -> bool |
| |
| ``True`` if two tensors have the same size and elements, ``False`` otherwise. |
| |
| Example:: |
| |
| >>> torch.equal(torch.Tensor([1, 2]), torch.Tensor([1, 2])) |
| True |
| """) |
| |
| add_docstr(torch.erf, |
| r""" |
| erf(tensor, out=None) -> Tensor |
| |
| Computes the error function of each element. The error function is defined as follows: |
| |
| .. math:: |
| \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.erf(torch.Tensor([0, -1., 10.])) |
| |
| 0.0000 |
| -0.8427 |
| 1.0000 |
| [torch.FloatTensor of size (3,)] |
| """) |
| |
| add_docstr(torch.erfinv, |
| r""" |
| erfinv(tensor, out=None) -> Tensor |
| |
| Computes the inverse error function of each element. The inverse error function is defined |
| in the range :math:`(-1, 1)` as: |
| |
| .. math:: |
| \mathrm{erfinv}(\mathrm{erf}(x)) = x |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.erfinv(torch.Tensor([0, 0.5, -1.])) |
| |
| 0.0000 |
| 0.4769 |
| -inf |
| [torch.FloatTensor of size (3,)] |
| """) |
| |
| add_docstr(torch.exp, |
| r""" |
| exp(tensor, out=None) -> Tensor |
| |
| Returns a new tensor with the exponential of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = e^{x_{i}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.exp(torch.Tensor([0, math.log(2)])) |
| |
| 1 |
| 2 |
| [torch.FloatTensor of size (2,)] |
| """) |
| |
| add_docstr(torch.expm1, |
| r""" |
| expm1(tensor, out=None) -> Tensor |
| |
| Returns a new tensor with the exponential of the elements minus 1 |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = e^{x_{i}} - 1 |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.expm1(torch.Tensor([0, math.log(2)])) |
| |
| 0 |
| 1 |
| [torch.FloatTensor of size (2,)] |
| """) |
| |
| add_docstr(torch.eye, |
| r""" |
| eye(n, m=None, out=None) |
| |
| Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. |
| |
| Args: |
| n (int): the number of rows |
| m (int, optional): the number of columns with default being :attr:`n` |
| out (Tensor, optional): the output tensor |
| |
| Returns: |
| Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere |
| |
| Example:: |
| |
| >>> torch.eye(3) |
| |
| 1 0 0 |
| 0 1 0 |
| 0 0 1 |
| [torch.FloatTensor of size (3,3)] |
| """) |
| |
| add_docstr(torch.floor, |
| r""" |
| floor(input, out=None) -> Tensor |
| |
| Returns a new tensor with the floor of the elements of :attr:`input`, |
| the largest integer less than or equal to each element. |
| |
| .. math:: |
| \text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.floor(a) |
| |
| 1 |
| 0 |
| -1 |
| -1 |
| [torch.FloatTensor of size (4,)] |
| |
| |
| """) |
| |
| add_docstr(torch.fmod, |
| r""" |
| fmod(input, divisor, out=None) -> Tensor |
| |
| Computes the element-wise remainder of division. |
| |
| The dividend and divisor may contain both for integer and floating point |
| numbers. The remainder has the same sign as the dividend :attr:`input`. |
| |
| When :attr:`divisor` is a tensor, the shapes of :attr:`input` and |
| :attr:`divisor` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the dividend |
| divisor (Tensor or float): the divisor, which may be either a number or a tensor of the same shape as the dividend |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.fmod(torch.Tensor([-3, -2, -1, 1, 2, 3]), 2) |
| |
| -1 |
| -0 |
| -1 |
| 1 |
| 0 |
| 1 |
| [torch.FloatTensor of size (6,)] |
| |
| >>> torch.fmod(torch.Tensor([1, 2, 3, 4, 5]), 1.5) |
| |
| 1.0000 |
| 0.5000 |
| 0.0000 |
| 1.0000 |
| 0.5000 |
| [torch.FloatTensor of size (5,)] |
| |
| .. seealso:: |
| |
| :func:`torch.remainder`, which computes the element-wise remainder of |
| division equivalently to Python's `%` operator |
| """) |
| |
| add_docstr(torch.frac, |
| r""" |
| frac(tensor, out=None) -> Tensor |
| |
| Computes the fractional portion of each element in :attr:`tensor`. |
| |
| .. math:: |
| \text{out}_{i} = \text{input}_{i} - \left\lfloor \text{input}_{i} \right\rfloor |
| |
| Example:: |
| |
| >>> torch.frac(torch.Tensor([1, 2.5, -3.2])) |
| |
| 0.0000 |
| 0.5000 |
| -0.2000 |
| [torch.FloatTensor of size (3,)] |
| """) |
| |
| add_docstr(torch.from_numpy, |
| r""" |
| from_numpy(ndarray) -> Tensor |
| |
| Creates a :class:`Tensor` from a :class:`numpy.ndarray`. |
| |
| The returned tensor and `ndarray` share the same memory. Modifications to the |
| tensor will be reflected in the `ndarray` and vice versa. The returned tensor |
| is not resizable. |
| |
| Example:: |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.from_numpy(a) |
| >>> t |
| |
| 1 |
| 2 |
| 3 |
| [torch.LongTensor of size (3,)] |
| |
| >>> t[0] = -1 |
| >>> a |
| array([-1, 2, 3]) |
| """) |
| |
| add_docstr(torch.gather, |
| r""" |
| gather(input, dim, index, out=None) -> Tensor |
| |
| Gathers values along an axis specified by `dim`. |
| |
| For a 3-D tensor the output is specified by:: |
| |
| out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 |
| out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 |
| out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 |
| |
| If :attr:`input` is an n-dimensional tensor with size |
| :math:`(x_0, x_1..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})` |
| and :attr:`dim` :math:`= i`, then :attr:`index` must be an :math:`n`-dimensional tensor with |
| size :math:`(x_0, x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})` where :math:`y \geq 1` |
| and :attr:`out` will have the same size as :attr:`index`. |
| |
| Args: |
| input (Tensor): the source tensor |
| dim (int): the axis along which to index |
| index (LongTensor): the indices of elements to gather |
| out (Tensor, optional): the destination tensor |
| |
| Example:: |
| |
| >>> t = torch.Tensor([[1,2],[3,4]]) |
| >>> torch.gather(t, 1, torch.LongTensor([[0,0],[1,0]])) |
| |
| 1 1 |
| 4 3 |
| [torch.FloatTensor of size (2,2)] |
| """) |
| |
| add_docstr(torch.ge, |
| r""" |
| ge(input, other, out=None) -> Tensor |
| |
| Computes :math:`input \geq other` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` or the same type as :attr:`input` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.ge(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| |
| 1 1 |
| 0 1 |
| [torch.ByteTensor of size (2,2)] |
| """) |
| |
| add_docstr(torch.gels, |
| r""" |
| gels(B, A, out=None) -> Tensor |
| |
| Computes the solution to the least squares and least norm problems for a full |
| rank matrix :math:`A` of size :math:`(m \times n)` and a matrix :math:`B` of |
| size :math:`(n \times k)`. |
| |
| If :math:`m \geq n`, :func:`gels` solves the least-squares problem: |
| |
| .. math:: |
| |
| \begin{array}{ll} |
| \min_X & \|AX-B\|_2. |
| \end{array} |
| |
| If :math:`m < n`, :func:`gels` solves the least-norm problem: |
| |
| .. math:: |
| |
| \begin{array}{ll} |
| \min_X & \|X\|_2 & \mbox{subject to} & AX = B. |
| \end{array} |
| |
| Returned tensor :math:`X` has shape :math:`(\max(m, n) \times k)`. The first :math:`n` |
| rows of :math:`X` contains the solution. If :math`m \geq n`, the residual sum of squares |
| for the solution in each column is given by the sum of squares of elements in the |
| remaining :math:`m - n` rows of that column. |
| |
| Args: |
| B (Tensor): the matrix :math:`B` |
| A (Tensor): the :math:`m` by :math:`n` matrix :math:`A` |
| out (tuple, optional): the optional destination tensor |
| |
| Returns: |
| (Tensor, Tensor): A tuple containing: |
| |
| - **X** (*Tensor*): the least squares solution |
| - **qr** (*Tensor*): the details of the QR factorization |
| |
| .. note:: |
| |
| The returned matrices will always be transposed, irrespective of the strides |
| of the input matrices. That is, they will have stride `(1, m)` instead of |
| `(m, 1)`. |
| |
| Example:: |
| |
| |
| >>> A = torch.Tensor([[1, 1, 1], |
| [2, 3, 4], |
| [3, 5, 2], |
| [4, 2, 5], |
| [5, 4, 3]]) |
| >>> B = torch.Tensor([[-10, -3], |
| [ 12, 14], |
| [ 14, 12], |
| [ 16, 16], |
| [ 18, 16]]) |
| >>> X, _ = torch.gels(B, A) |
| >>> X |
| |
| 2.0000 1.0000 |
| 1.0000 1.0000 |
| 1.0000 2.0000 |
| 10.9635 4.8501 |
| 8.9332 5.2418 |
| [torch.FloatTensor of size (5,2)] |
| """) |
| |
| add_docstr(torch.geqrf, |
| r""" |
| geqrf(input, out=None) -> (Tensor, Tensor) |
| |
| This is a low-level function for calling LAPACK directly. |
| |
| You'll generally want to use :func:`torch.qr` instead. |
| |
| Computes a QR decomposition of :attr:`input`, but without constructing |
| :math:`Q` and :math:`R` as explicit separate matrices. |
| |
| Rather, this directly calls the underlying LAPACK function `?geqrf` |
| which produces a sequence of 'elementary reflectors'. |
| |
| See `LAPACK documentation for geqrf`_ for further details. |
| |
| Args: |
| input (Tensor): the input matrix |
| out (tuple, optional): the output tuple of (Tensor, Tensor) |
| |
| .. _LAPACK documentation for geqrf: |
| https://software.intel.com/en-us/node/521004 |
| |
| """) |
| |
| add_docstr(torch.ger, |
| r""" |
| ger(vec1, vec2, out=None) -> Tensor |
| |
| Outer product of :attr:`vec1` and :attr:`vec2`. |
| If :attr:`vec1` is a vector of size :math:`n` and :attr:`vec2` is a vector of |
| size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Args: |
| vec1 (Tensor): 1-D input vector |
| vec2 (Tensor): 1-D input vector |
| out (Tensor, optional): optional output matrix |
| |
| Example:: |
| |
| >>> v1 = torch.arange(1, 5) |
| >>> v2 = torch.arange(1, 4) |
| >>> torch.ger(v1, v2) |
| |
| 1 2 3 |
| 2 4 6 |
| 3 6 9 |
| 4 8 12 |
| [torch.FloatTensor of size (4,3)] |
| |
| """) |
| |
| add_docstr(torch.gesv, |
| r""" |
| gesv(B, A, out=None) -> (Tensor, Tensor) |
| |
| This function returns the solution to the system of linear |
| equations represented by :math:`AX = B` and the LU factorization of |
| A, in order as a tuple `X, LU`. |
| |
| `LU` contains `L` and `U` factors for LU factorization of `A`. |
| |
| :attr:`A` has to be a square and non-singular matrix (2-D tensor). |
| |
| If `A` is an :math:`(m \times m)` matrix and `B` is :math:`(m \times k)`, |
| the result `LU` is :math:`(m \times m)` and `X` is :math:`(m \times k)`. |
| |
| .. note:: |
| |
| Irrespective of the original strides, the returned matrices |
| `X` and `LU` will be transposed, i.e. with strides `(1, m)` |
| instead of `(m, 1)`. |
| |
| Args: |
| B (Tensor): input matrix of :math:`(m \times k)` dimensions |
| A (Tensor): input square matrix of :math:`(m \times m)` dimensions |
| out (Tensor, optional): optional output matrix |
| |
| Example:: |
| |
| >>> A = torch.Tensor([[6.80, -2.11, 5.66, 5.97, 8.23], |
| [-6.05, -3.30, 5.36, -4.44, 1.08], |
| [-0.45, 2.58, -2.70, 0.27, 9.04], |
| [8.32, 2.71, 4.35, -7.17, 2.14], |
| [-9.67, -5.14, -7.26, 6.08, -6.87]]).t() |
| >>> B = torch.Tensor([[4.02, 6.19, -8.22, -7.57, -3.03], |
| [-1.56, 4.00, -8.67, 1.75, 2.86], |
| [9.81, -4.09, -4.57, -8.61, 8.99]]).t() |
| >>> X, LU = torch.gesv(B, A) |
| >>> torch.dist(B, torch.mm(A, X)) |
| |
| 1.00000e-06 * |
| 7.0977 |
| [torch.FloatTensor of size ()] |
| |
| """) |
| |
| add_docstr(torch.get_num_threads, |
| r""" |
| get_num_threads() -> int |
| |
| Gets the number of OpenMP threads used for parallelizing CPU operations |
| """) |
| |
| add_docstr(torch.gt, |
| r""" |
| gt(input, other, out=None) -> Tensor |
| |
| Computes :math:`input > other` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` or the same type as :attr:`input` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.gt(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| |
| 0 1 |
| 0 0 |
| [torch.ByteTensor of size (2,2)] |
| """) |
| |
| add_docstr(torch.histc, |
| r""" |
| histc(input, bins=100, min=0, max=0, out=None) -> Tensor |
| |
| Computes the histogram of a tensor. |
| |
| The elements are sorted into equal width bins between :attr:`min` and |
| :attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and |
| maximum values of the data are used. |
| |
| Args: |
| input (Tensor): the input tensor |
| bins (int): number of histogram bins |
| min (int): lower end of the range (inclusive) |
| max (int): upper end of the range (inclusive) |
| out (Tensor, optional): the output tensor |
| |
| Returns: |
| Tensor: Histogram represented as a tensor |
| |
| Example:: |
| |
| >>> torch.histc(torch.FloatTensor([1, 2, 1]), bins=4, min=0, max=3) |
| |
| 0 |
| 2 |
| 1 |
| 0 |
| [torch.FloatTensor of size (4,)] |
| |
| |
| """) |
| |
| add_docstr(torch.index_select, |
| r""" |
| index_select(input, dim, index, out=None) -> Tensor |
| |
| Returns a new tensor which indexes the :attr:`input` tensor along dimension |
| :attr:`dim` using the entries in :attr:`index` which is a `LongTensor`. |
| |
| The returned tensor has the same number of dimensions as the original tensor |
| (:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length |
| of :attr:`index`; other dimensions have the same size as in the original tensor. |
| |
| .. note:: The returned tensor does **not** use the same storage as the original |
| tensor. If :attr:`out` has a different shape than expected, we |
| silently change it to the correct shape, reallocating the underlying |
| storage if necessary. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension in which we index |
| index (LongTensor): the 1-D tensor containing the indices to index |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| |
| 1.2045 2.4084 0.4001 1.1372 |
| 0.5596 1.5677 0.6219 -0.7954 |
| 1.3635 -1.2313 -0.5414 -1.8478 |
| [torch.FloatTensor of size (3,4)] |
| |
| >>> indices = torch.LongTensor([0, 2]) |
| >>> torch.index_select(x, 0, indices) |
| |
| 1.2045 2.4084 0.4001 1.1372 |
| 1.3635 -1.2313 -0.5414 -1.8478 |
| [torch.FloatTensor of size (2,4)] |
| |
| >>> torch.index_select(x, 1, indices) |
| |
| 1.2045 0.4001 |
| 0.5596 0.6219 |
| 1.3635 -0.5414 |
| [torch.FloatTensor of size (3,2)] |
| |
| """) |
| |
| add_docstr(torch.inverse, |
| r""" |
| inverse(input, out=None) -> Tensor |
| |
| Takes the inverse of the square matrix :attr:`input`. |
| |
| .. note:: |
| |
| Irrespective of the original strides, the returned matrix will be |
| transposed, i.e. with strides `(1, m)` instead of `(m, 1)` |
| |
| Args: |
| input (Tensor): the input 2-D square tensor |
| out (Tensor, optional): the optional output tensor |
| |
| Example:: |
| |
| >>> x = torch.rand(10, 10) |
| >>> y = torch.inverse(x) |
| >>> z = torch.mm(x, y) |
| >>> z |
| |
| 1.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 |
| 0.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 |
| 0.0000 0.0000 1.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 |
| 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 |
| 0.0000 0.0000 -0.0000 -0.0000 1.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 |
| 0.0000 0.0000 0.0000 -0.0000 0.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000 |
| 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 -0.0000 0.0000 |
| 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 1.0000 -0.0000 0.0000 |
| -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 1.0000 -0.0000 |
| -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 1.0000 |
| [torch.FloatTensor of size (10,10)] |
| |
| >>> torch.max(torch.abs(z - torch.eye(10))) # Max nonzero |
| |
| 1.00000e-07 * |
| 5.0967 |
| [torch.FloatTensor of size ()] |
| |
| """) |
| |
| add_docstr(torch.kthvalue, |
| r""" |
| kthvalue(input, k, dim=None, keepdim=False, out=None) -> (Tensor, LongTensor) |
| |
| Returns the :attr:`k` th smallest element of the given :attr:`input` tensor |
| along a given dimension. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| A tuple of `(values, indices)` is returned, where the `indices` is the indices |
| of the kth-smallest element in the original `input` tensor in dimension `dim`. |
| |
| If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors |
| are the same size as :attr:`input`, except in the dimension :attr:`dim` where |
| they are of size 1. Otherwise, :attr:`dim` is squeezed |
| (see :func:`torch.squeeze`), resulting in both the :attr:`values` and |
| :attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| k (int): k for the k-th smallest element |
| dim (int, optional): the dimension to find the kth value along |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| out (tuple, optional): the output tuple of (Tensor, LongTensor) |
| can be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.arange(1, 6) |
| >>> x |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.kthvalue(x, 4) |
| ( |
| 4 |
| [torch.FloatTensor of size (1,)] |
| , |
| 3 |
| [torch.LongTensor of size (1,)] |
| ) |
| |
| >>> x=torch.arange(1,7).resize_(2,3) |
| >>> x |
| |
| 1 2 3 |
| 4 5 6 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> torch.kthvalue(x,2,0,True) |
| ( |
| 4 5 6 |
| [torch.FloatTensor of size (1,3)] |
| , |
| 1 1 1 |
| [torch.LongTensor of size (1,3)] |
| ) |
| """) |
| |
| add_docstr(torch.le, |
| r""" |
| le(input, other, out=None) -> Tensor |
| |
| Computes :math:`input \leq other` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` or the same type as :attr:`input` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.le(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| |
| 1 0 |
| 1 1 |
| [torch.ByteTensor of size (2,2)] |
| """) |
| |
| add_docstr(torch.lerp, |
| r""" |
| lerp(start, end, weight, out=None) |
| |
| Does a linear interpolation of two tensors :attr:`start` and :attr:`end` based |
| on a scalar :attr:`weight` and returns the resulting :attr:`out` tensor. |
| |
| .. math:: |
| out_i = start_i + weight \times (end_i - start_i) |
| |
| The shapes of :attr:`start` and :attr:`end` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| start (Tensor): the tensor with the starting points |
| end (Tensor): the tensor with the ending points |
| weight (float): the weight for the interpolation formula |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> start = torch.arange(1, 5) |
| >>> end = torch.Tensor(4).fill_(10) |
| >>> start |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> end |
| |
| 10 |
| 10 |
| 10 |
| 10 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.lerp(start, end, 0.5) |
| |
| 5.5000 |
| 6.0000 |
| 6.5000 |
| 7.0000 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.linspace, |
| r""" |
| linspace(start, end, steps=100, out=None) -> Tensor |
| |
| Returns a one-dimensional tensor of :attr:`steps` |
| equally spaced points between :attr:`start` and :attr:`end`. |
| |
| The output tensor is 1-D of size :attr:`steps`. |
| |
| Args: |
| start (float): the starting value for the set of points |
| end (float): the ending value for the set of points |
| steps (int): number of points to sample between :attr:`start` |
| and :attr:`end` |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.linspace(3, 10, steps=5) |
| |
| 3.0000 |
| 4.7500 |
| 6.5000 |
| 8.2500 |
| 10.0000 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.linspace(-10, 10, steps=5) |
| |
| -10 |
| -5 |
| 0 |
| 5 |
| 10 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.linspace(start=-10, end=10, steps=5) |
| |
| -10 |
| -5 |
| 0 |
| 5 |
| 10 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.log, |
| r""" |
| log(input, out=None) -> Tensor |
| |
| Returns a new tensor with the natural logarithm of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{e} (x_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.4183 |
| 0.3722 |
| -0.3091 |
| 0.4149 |
| 0.5857 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.log(a) |
| |
| nan |
| -0.9883 |
| nan |
| -0.8797 |
| -0.5349 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.log10, |
| r""" |
| log10(input, out=None) -> Tensor |
| |
| Returns a new tensor with the logarithm to the base 10 of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{10} (x_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.rand(5) |
| >>> a |
| |
| 0.4496 |
| 0.1608 |
| 0.6884 |
| 0.8989 |
| 0.1774 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.log10(a) |
| |
| -0.3472 |
| -0.7937 |
| -0.1622 |
| -0.0463 |
| -0.7511 |
| [torch.FloatTensor of size (5,)] |
| """) |
| |
| add_docstr(torch.log1p, |
| r""" |
| log1p(input, out=None) -> Tensor |
| |
| Returns a new tensor with the natural logarithm of (1 + :attr:`input`). |
| |
| .. math:: |
| y_i = \log_{e} (x_i + 1) |
| |
| .. note:: This function is more accurate than :func:`torch.log` for small |
| values of :attr:`input` |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.4183 |
| 0.3722 |
| -0.3091 |
| 0.4149 |
| 0.5857 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.log1p(a) |
| |
| -0.5418 |
| 0.3164 |
| -0.3697 |
| 0.3471 |
| 0.4611 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.log2, |
| r""" |
| log2(input, out=None) -> Tensor |
| |
| Returns a new tensor with the logarithm to the base 2 of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{2} (x_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.rand(5) |
| >>> a |
| |
| 0.2260 |
| 0.0541 |
| 0.3393 |
| 0.7210 |
| 0.0058 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.log2(a) |
| |
| -2.1458 |
| -4.2070 |
| -1.5593 |
| -0.4719 |
| -7.4246 |
| [torch.FloatTensor of size (5,)] |
| """) |
| |
| add_docstr(torch.logspace, |
| r""" |
| logspace(start, end, steps=100, out=None) -> Tensor |
| |
| Returns a one-dimensional tensor of :attr:`steps` points |
| logarithmically spaced between :math:`10^{\text{start}}` and :math:`10^{\text{end}}`. |
| |
| The output is a 1-D tensor of size :attr:`steps`. |
| |
| Args: |
| start (float): the starting value for the set of points |
| end (float): the ending value for the set of points |
| steps (int): number of points to sample between |
| :attr:`start` and :attr:`end` |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.logspace(start=-10, end=10, steps=5) |
| |
| 1.0000e-10 |
| 1.0000e-05 |
| 1.0000e+00 |
| 1.0000e+05 |
| 1.0000e+10 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.logspace(start=0.1, end=1.0, steps=5) |
| |
| 1.2589 |
| 2.1135 |
| 3.5481 |
| 5.9566 |
| 10.0000 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.lt, |
| r""" |
| lt(input, other, out=None) -> Tensor |
| |
| Computes :math:`input < other` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` or the same type as :attr:`input` |
| |
| Returns: |
| Tensor: A `torch.ByteTensor` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.lt(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| |
| 0 0 |
| 1 0 |
| [torch.ByteTensor of size (2,2)] |
| """) |
| |
| add_docstr(torch.masked_select, |
| r""" |
| masked_select(input, mask, out=None) -> Tensor |
| |
| Returns a new 1-D tensor which indexes the :attr:`input` tensor according to |
| the binary mask :attr:`mask` which is a `ByteTensor`. |
| |
| The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need |
| to match, but they must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. note:: The returned tensor does **not** use the same storage |
| as the original tensor |
| |
| Args: |
| input (Tensor): the input data |
| mask (ByteTensor): the tensor containing the binary mask to index with |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| |
| 1.2045 2.4084 0.4001 1.1372 |
| 0.5596 1.5677 0.6219 -0.7954 |
| 1.3635 -1.2313 -0.5414 -1.8478 |
| [torch.FloatTensor of size (3,4)] |
| |
| >>> mask = x.ge(0.5) |
| >>> mask |
| |
| 1 1 0 1 |
| 1 1 1 0 |
| 1 0 0 0 |
| [torch.ByteTensor of size (3,4)] |
| |
| >>> torch.masked_select(x, mask) |
| |
| 1.2045 |
| 2.4084 |
| 1.1372 |
| 0.5596 |
| 1.5677 |
| 0.6219 |
| 1.3635 |
| [torch.FloatTensor of size (7,)] |
| |
| """) |
| |
| add_docstr(torch.max, |
| r""" |
| .. function:: max(input) -> Tensor |
| |
| Returns the maximum value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.4729 -0.2266 -0.2085 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.max(a) |
| |
| 0.4729 |
| [torch.FloatTensor of size ()] |
| |
| |
| .. function:: max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor) |
| |
| Returns the maximum value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. The second return value is the index location of each |
| maximum value found (argmax). |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| out (tuple, optional): the result tuple of two output tensors (max, max_indices) |
| |
| Example:: |
| |
| >> a = torch.randn(4, 4) |
| >> a |
| |
| 0.0692 0.3142 1.2513 -0.5428 |
| 0.9288 0.8552 -0.2073 0.6409 |
| 1.0695 -0.0101 -2.4507 -1.2230 |
| 0.7426 -0.7666 0.4862 -0.6628 |
| torch.FloatTensor of size (4,4)] |
| |
| >>> torch.max(a, 1) |
| ( |
| 1.2513 |
| 0.9288 |
| 1.0695 |
| 0.7426 |
| [torch.FloatTensor of size (4,)] |
| , |
| 2 |
| 0 |
| 0 |
| 0 |
| [torch.LongTensor of size (4,)] |
| ) |
| |
| .. function:: max(input, other, out=None) -> Tensor |
| |
| Each element of the tensor :attr:`input` is compared with the corresponding |
| element of the tensor :attr:`other` and an element-wise maximum is taken. |
| |
| The shapes of :attr:`input` and :attr:`other` don't need to match, |
| but they must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| out_i = \max(tensor_i, other_i) |
| |
| .. note:: When the shapes do not match, the shape of the returned output tensor |
| follows the :ref:`broadcasting rules <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the second input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> b = torch.randn(4) |
| >>> b |
| |
| 1.0067 |
| -0.8010 |
| 0.6258 |
| 0.3627 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.max(a, b) |
| |
| 1.3869 |
| 0.3912 |
| 0.6258 |
| 0.3627 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.mean, |
| r""" |
| .. function:: mean(input) -> Tensor |
| |
| Returns the mean value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| -1.4550 0.8839 -1.3408 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.mean(a) |
| |
| -0.6373 |
| [torch.FloatTensor of size ()] |
| |
| |
| .. function:: mean(input, dim, keepdim=False, out=None) -> Tensor |
| |
| Returns the mean value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the |
| output tensor having 1 fewer dimension. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool, optional): whether the output tensor has :attr:`dim` retained or not |
| out (Tensor): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -1.2738 -0.3058 0.1230 -1.9615 |
| 0.8771 -0.5430 -0.9233 0.9879 |
| 1.4107 0.0317 -0.6823 0.2255 |
| -1.3854 0.4953 -0.2160 0.2435 |
| [torch.FloatTensor of size (4,4)] |
| |
| >>> torch.mean(a, 1) |
| |
| -0.8545 |
| 0.0997 |
| 0.2464 |
| -0.2157 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.mean(a, 1, True) |
| |
| -0.8545 |
| 0.0997 |
| 0.2464 |
| -0.2157 |
| [torch.FloatTensor of size (4,1)] |
| |
| """) |
| |
| add_docstr(torch.median, |
| r""" |
| .. function:: median(input) -> Tensor |
| |
| Returns the median value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.5749 -0.2804 -0.7931 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.median(a) |
| |
| -0.2804 |
| [torch.FloatTensor of size ()] |
| |
| |
| .. function:: median(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor) |
| |
| Returns the median value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. Also returns the index location of the median value |
| as a `LongTensor`. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the outputs tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| values (Tensor, optional): the output tensor |
| indices (Tensor, optional): the output index tensor |
| |
| Example:: |
| |
| >>> a |
| |
| -0.6891 -0.6662 |
| 0.2697 0.7412 |
| 0.5254 -0.7402 |
| 0.5528 -0.2399 |
| [torch.FloatTensor of size (4,2)] |
| |
| >>> a = torch.randn(4, 5) |
| >>> a |
| |
| 0.4056 -0.3372 1.0973 -2.4884 0.4334 |
| 2.1336 0.3841 0.1404 -0.1821 -0.7646 |
| -0.2403 1.3975 -2.0068 0.1298 0.0212 |
| -1.5371 -0.7257 -0.4871 -0.2359 -1.1724 |
| [torch.FloatTensor of size (4,5)] |
| |
| >>> torch.median(a, 1) |
| ( |
| 0.4056 |
| 0.1404 |
| 0.0212 |
| -0.7257 |
| [torch.FloatTensor of size (4,)] |
| , |
| 0 |
| 2 |
| 4 |
| 1 |
| [torch.LongTensor of size (4,)] |
| ) |
| |
| """) |
| |
| add_docstr(torch.min, |
| r""" |
| .. function:: min(input) -> Tensor |
| |
| Returns the minimum value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.4729 -0.2266 -0.2085 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.min(a) |
| -0.22663167119026184 |
| |
| |
| .. function:: min(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor) |
| |
| Returns the minimum value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. The second return value is the index location of each |
| minimum value found (argmin). |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| out (tuple, optional): the tuple of two output tensors (min, min_indices) |
| |
| Example:: |
| |
| >> a = torch.randn(4, 4) |
| >> a |
| |
| 0.0692 0.3142 1.2513 -0.5428 |
| 0.9288 0.8552 -0.2073 0.6409 |
| 1.0695 -0.0101 -2.4507 -1.2230 |
| 0.7426 -0.7666 0.4862 -0.6628 |
| torch.FloatTensor of size (4,4)] |
| |
| >> torch.min(a, 1) |
| |
| 0.5428 |
| 0.2073 |
| 2.4507 |
| 0.7666 |
| torch.FloatTensor of size (4,)] |
| |
| 3 |
| 2 |
| 2 |
| 1 |
| torch.LongTensor of size (4,)] |
| |
| .. function:: min(input, other, out=None) -> Tensor |
| |
| Each element of the tensor :attr:`input` is compared with the corresponding |
| element of the tensor :attr:`other` and an element-wise minimum is taken. |
| The resulting tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` don't need to match, |
| but they must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| out_i = \min(tensor_i, other_i) |
| |
| .. note:: When the shapes do not match, the shape of the returned output tensor |
| follows the :ref:`broadcasting rules <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the second input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> b = torch.randn(4) |
| >>> b |
| |
| 1.0067 |
| -0.8010 |
| 0.6258 |
| 0.3627 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.min(a, b) |
| |
| 1.0067 |
| -0.8010 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.mm, |
| r""" |
| mm(mat1, mat2, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. |
| |
| If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a |
| :math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| For broadcasting matrix products, see :func:`torch.matmul`. |
| |
| Args: |
| mat1 (Tensor): the first matrix to be multiplied |
| mat2 (Tensor): the second matrix to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.mm(mat1, mat2) |
| |
| 0.0519 -0.3304 1.2232 |
| 4.3910 -5.1498 2.7571 |
| [torch.FloatTensor of size (2,3)] |
| """) |
| |
| add_docstr(torch.matmul, |
| r""" |
| matmul(tensor1, tensor2, out=None) -> Tensor |
| |
| Matrix product of two tensors. |
| |
| The behavior depends on the dimensionality of the tensors as follows: |
| |
| - If both tensors are 1-dimensional, the dot product (scalar) is returned. |
| - If both arguments are 2-dimensional, the matrix-matrix product is returned. |
| - If the first argument is 1-dimensional and the second argument is 2-dimensional, |
| a 1 is prepended to its dimension for the purpose of the matrix multiply. |
| After the matrix multiply, the prepended dimension is removed. |
| - If the first argument is 2-dimensional and the second argument is 1-dimensional, |
| the matrix-vector product is returned. |
| - If both arguments are at least 1-dimensional and at least one argument is |
| N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first |
| argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the |
| batched matrix multiply and removed after. If the second argument is 1-dimensional, a |
| 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. |
| The non-matrix (i.e. batch) dimensions are :ref:`broadcasted <broadcasting-semantics>` (and thus |
| must be broadcastable). For example, if :attr:`tensor1` is a |
| :math:`(j \times 1 \times n \times m)` tensor and :attr:`tensor2` is a :math:`(k \times m \times p)` |
| tensor, :attr:`out` will be an :math:`(j \times k \times n \times p)` tensor. |
| |
| .. note:: |
| |
| The 1-dimensional dot product version of this function does not support an :attr:`out` parameter. |
| |
| Arguments: |
| tensor1 (Tensor): the first tensor to be multiplied |
| tensor2 (Tensor): the second tensor to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> # vector x vector |
| >>> tensor1 = torch.randn(3) |
| >>> tensor2 = torch.randn(3) |
| >>> torch.matmul(tensor1, tensor2).size() |
| |
| -0.4334 |
| [torch.FloatTensor of size ()] |
| |
| >>> # matrix x vector |
| >>> tensor1 = torch.randn(3, 4) |
| >>> tensor2 = torch.randn(4) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([3]) |
| >>> # batched matrix x broadcasted vector |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(4) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3]) |
| >>> # batched matrix x batched matrix |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(10, 4, 5) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3, 5]) |
| >>> # batched matrix x broadcasted matrix |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(4, 5) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3, 5]) |
| |
| """) |
| |
| add_docstr(torch.mode, |
| r""" |
| mode(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor) |
| |
| Returns the mode value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. Also returns the index location of the mode value |
| as a `LongTensor`. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| values (Tensor, optional): the output tensor |
| indices (Tensor, optional): the output index tensor |
| |
| Example:: |
| |
| >>> a |
| |
| -0.6891 -0.6662 |
| 0.2697 0.7412 |
| 0.5254 -0.7402 |
| 0.5528 -0.2399 |
| [torch.FloatTensor of size (4,2)] |
| |
| >>> a = torch.randn(4, 5) |
| >>> a |
| |
| 0.4056 -0.3372 1.0973 -2.4884 0.4334 |
| 2.1336 0.3841 0.1404 -0.1821 -0.7646 |
| -0.2403 1.3975 -2.0068 0.1298 0.0212 |
| -1.5371 -0.7257 -0.4871 -0.2359 -1.1724 |
| [torch.FloatTensor of size (4,5)] |
| |
| >>> torch.mode(a, 1) |
| ( |
| -2.4884 |
| -0.7646 |
| -2.0068 |
| -1.5371 |
| [torch.FloatTensor of size (4,)] |
| , |
| 3 |
| 4 |
| 2 |
| 0 |
| [torch.LongTensor of size (4,)] |
| ) |
| |
| """) |
| |
| add_docstr(torch.mul, |
| r""" |
| .. function:: mul(input, value, out=None) |
| |
| Multiplies each element of the input :attr:`input` with the scalar |
| :attr:`value` and returns a new resulting tensor. |
| |
| .. math:: |
| out_i = value \times input_i |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): the number to be multiplied to each element of :attr:`input` |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| |
| -0.9374 |
| -0.5254 |
| -0.6069 |
| [torch.FloatTensor of size (3,)] |
| |
| >>> torch.mul(a, 100) |
| |
| -93.7411 |
| -52.5374 |
| -60.6908 |
| [torch.FloatTensor of size (3,)] |
| |
| |
| .. function:: mul(input, other, out=None) |
| |
| Each element of the tensor :attr:`input` is multiplied by each element of the |
| Tensor :attr:`other`. The resulting tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| out_i = input_i \times other_i |
| |
| Args: |
| input (Tensor): the first multiplicand tensor |
| other (Tensor): the second multiplicand tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -0.7280 0.0598 -1.4327 -0.5825 |
| -0.1427 -0.0690 0.0821 -0.3270 |
| -0.9241 0.5110 0.4070 -1.1188 |
| -0.8308 0.7426 -0.6240 -1.1582 |
| [torch.FloatTensor of size (4,4)] |
| |
| >>> b = torch.randn(2, 8) |
| >>> b |
| |
| 0.0430 -1.0775 0.6015 1.1647 -0.6549 0.0308 -0.1670 1.0742 |
| -1.2593 0.0292 -0.0849 0.4530 1.2404 -0.4659 -0.1840 0.5974 |
| [torch.FloatTensor of size (2,8)] |
| |
| >>> torch.mul(a, b) |
| |
| -0.0313 -0.0645 -0.8618 -0.6784 |
| 0.0934 -0.0021 -0.0137 -0.3513 |
| 1.1638 0.0149 -0.0346 -0.5068 |
| -1.0304 -0.3460 0.1148 -0.6919 |
| [torch.FloatTensor of size (4,4)] |
| |
| """) |
| |
| add_docstr(torch.multinomial, |
| r""" |
| multinomial(input, num_samples, replacement=False, out=None) -> LongTensor |
| |
| Returns a tensor where each row contains :attr:`num_samples` indices sampled |
| from the multinomial probability distribution located in the corresponding row |
| of tensor :attr:`input`. |
| |
| .. note:: |
| The rows of :attr:`input` do not need to sum to one (in which case we use |
| the values as weights), but must be non-negative and have a non-zero sum. |
| |
| Indices are ordered from left to right according to when each was sampled |
| (first samples are placed in first column). |
| |
| If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`. |
| |
| If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape |
| :math:`(m \times num\_samples)`. |
| |
| If replacement is ``True``, samples are drawn with replacement. |
| |
| If not, they are drawn without replacement, which means that when a |
| sample index is drawn for a row, it cannot be drawn again for that row. |
| |
| This implies the constraint that :attr:`num_samples` must be lower than |
| :attr:`input` length (or number of columns of :attr:`input` if it is a matrix). |
| |
| Args: |
| input (Tensor): the input tensor containing probabilities |
| num_samples (int): number of samples to draw |
| replacement (bool, optional): whether to draw with replacement or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> weights = torch.Tensor([0, 10, 3, 0]) # create a tensor of weights |
| >>> torch.multinomial(weights, 4) |
| |
| 1 |
| 2 |
| 0 |
| 0 |
| [torch.LongTensor of size (4,)] |
| |
| >>> torch.multinomial(weights, 4, replacement=True) |
| |
| 1 |
| 2 |
| 1 |
| 2 |
| [torch.LongTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.mv, |
| r""" |
| mv(mat, vec, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`mat` and the vector |
| :attr:`vec`. |
| |
| If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of |
| size :math:`m`, :attr:`out` will be 1-D of size :math:`n`. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Args: |
| mat (Tensor): matrix to be multiplied |
| vec (Tensor): vector to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.mv(mat, vec) |
| |
| -2.0939 |
| -2.2950 |
| [torch.FloatTensor of size (2,)] |
| |
| """) |
| |
| add_docstr(torch.ne, |
| r""" |
| ne(input, other, out=None) -> Tensor |
| |
| Computes :math:`input \neq other` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` or the same type as `input` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true. |
| |
| Example:: |
| |
| >>> torch.ne(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| |
| 0 1 |
| 1 0 |
| [torch.ByteTensor of size (2,2)] |
| |
| """) |
| |
| add_docstr(torch.neg, |
| r""" |
| neg(input, out=None) -> Tensor |
| |
| Returns a new tensor with the negative of the elements of :attr:`input`. |
| |
| .. math:: |
| out = -1 \times input |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.4430 |
| 1.1690 |
| -0.8836 |
| -0.4565 |
| 0.2968 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.neg(a) |
| |
| 0.4430 |
| -1.1690 |
| 0.8836 |
| 0.4565 |
| -0.2968 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.nonzero, |
| r""" |
| nonzero(input, out=None) -> LongTensor |
| |
| Returns a tensor containing the indices of all non-zero elements of |
| :attr:`input`. Each row in the result contains the indices of a non-zero |
| element in :attr:`input`. |
| |
| If :attr:`input` has `n` dimensions, then the resulting indices tensor |
| :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of |
| non-zero elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (LongTensor, optional): the output tensor containing indices |
| |
| Example:: |
| |
| >>> torch.nonzero(torch.Tensor([1, 1, 1, 0, 1])) |
| |
| 0 |
| 1 |
| 2 |
| 4 |
| [torch.LongTensor of size (4,1)] |
| |
| >>> torch.nonzero(torch.Tensor([[0.6, 0.0, 0.0, 0.0], |
| [0.0, 0.4, 0.0, 0.0], |
| [0.0, 0.0, 1.2, 0.0], |
| [0.0, 0.0, 0.0,-0.4]])) |
| |
| 0 0 |
| 1 1 |
| 2 2 |
| 3 3 |
| [torch.LongTensor of size (4,2)] |
| |
| """) |
| |
| add_docstr(torch.norm, |
| r""" |
| .. function:: norm(input, p=2) -> Tensor |
| |
| Returns the p-norm of the :attr:`input` tensor. |
| |
| .. math:: |
| ||x||_{p} = \sqrt[p]{x_{1}^{p} + x_{2}^{p} + \ldots + x_{N}^{p}} |
| |
| Args: |
| input (Tensor): the input tensor |
| p (float, optional): the exponent value in the norm formulation |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.1628 0.1210 -0.9801 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.norm(a, 3) |
| |
| 0.9822 |
| [torch.FloatTensor of size ()] |
| |
| |
| |
| .. function:: norm(input, p, dim, keepdim=False, out=None) -> Tensor |
| |
| Returns the p-norm of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| p (float): the exponent value in the norm formulation |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 2) |
| >>> a |
| |
| -0.6891 -0.6662 |
| 0.2697 0.7412 |
| 0.5254 -0.7402 |
| 0.5528 -0.2399 |
| [torch.FloatTensor of size (4,2)] |
| |
| >>> torch.norm(a, 2, 1) |
| |
| 0.9585 |
| 0.7888 |
| 0.9077 |
| 0.6026 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.norm(a, 0, 1, True) |
| |
| 2 |
| 2 |
| 2 |
| 2 |
| [torch.FloatTensor of size (4,1)] |
| |
| """) |
| |
| add_docstr(torch.normal, |
| r""" |
| .. function:: normal(means, std, out=None) -> Tensor |
| |
| Returns a tensor of random numbers drawn from separate normal distributions |
| whose mean and standard deviation are given. |
| |
| The :attr:`means` is a tensor with the mean of |
| each output element's normal distribution |
| |
| The :attr:`std` is a tensor with the standard deviation of |
| each output element's normal distribution |
| |
| The shapes of :attr:`means` and :attr:`std` don't need to match, but the |
| total number of elements in each tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`means` |
| is used as the shape for the returned output tensor |
| |
| Args: |
| means (Tensor): the tensor of per-element means |
| std (Tensor): the tensor of per-element standard deviations |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.normal(means=torch.arange(1, 11), std=torch.arange(1, 0, -0.1)) |
| |
| 1.5104 |
| 1.6955 |
| 2.4895 |
| 4.9185 |
| 4.9895 |
| 6.9155 |
| 7.3683 |
| 8.1836 |
| 8.7164 |
| 9.8916 |
| [torch.FloatTensor of size (10,)] |
| |
| .. function:: normal(mean=0.0, std, out=None) -> Tensor |
| |
| Similar to the function above, but the means are shared among all drawn |
| elements. |
| |
| Args: |
| means (float, optional): the mean for all distributions |
| std (Tensor): the tensor of per-element standard deviations |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.normal(mean=0.5, std=torch.arange(1, 6)) |
| |
| 0.5723 |
| 0.0871 |
| -0.3783 |
| -2.5689 |
| 10.7893 |
| [torch.FloatTensor of size (5,)] |
| |
| .. function:: normal(means, std=1.0, out=None) -> Tensor |
| |
| Similar to the function above, but the standard-deviations are shared among |
| all drawn elements. |
| |
| Args: |
| means (Tensor): the tensor of per-element means |
| std (float, optional): the standard deviation for all distributions |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.normal(means=torch.arange(1, 6)) |
| |
| 1.1681 |
| 2.8884 |
| 3.7718 |
| 2.5616 |
| 4.2500 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.numel, |
| r""" |
| numel(input) -> int |
| |
| Returns the total number of elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 2, 3, 4, 5) |
| >>> torch.numel(a) |
| 120 |
| >>> a = torch.zeros(4,4) |
| >>> torch.numel(a) |
| 16 |
| |
| """) |
| |
| add_docstr(torch.ones, |
| r""" |
| ones(*sizes, out=None) -> Tensor |
| |
| Returns a tensor filled with the scalar value `1`, with the shape defined |
| by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a set of integers defining the shape of the output tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.ones(2, 3) |
| |
| 1 1 1 |
| 1 1 1 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> torch.ones(5) |
| |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.ones_like, |
| r""" |
| ones_like(input, out=None) -> Tensor |
| |
| Returns a tensor filled with the scalar value `1`, with the same size as |
| :attr:`input`. |
| |
| Args: |
| input (Tensor): the size of :attr:`input` will determine size of the output tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> input = torch.FloatTensor(2, 3) |
| >>> torch.ones_like(input) |
| |
| 1 1 1 |
| 1 1 1 |
| [torch.FloatTensor of size (2,3)] |
| """) |
| |
| add_docstr(torch.orgqr, |
| r""" |
| orgqr(a, tau) -> Tensor |
| |
| Computes the orthogonal matrix `Q` of a QR factorization, from the `(a, tau)` |
| tuple returned by :func:`torch.geqrf`. |
| |
| This directly calls the underlying LAPACK function `?orgqr`. |
| See `LAPACK documentation for orgqr`_ for further details. |
| |
| Args: |
| a (Tensor): the `a` from :func:`torch.geqrf`. |
| tau (Tensor): the `tau` from :func:`torch.geqrf`. |
| |
| .. _LAPACK documentation for orgqr: |
| https://software.intel.com/en-us/mkl-developer-reference-c-orgqr |
| |
| """) |
| |
| add_docstr(torch.ormqr, |
| r""" |
| ormqr(a, tau, mat, left=True, transpose=False) -> (Tensor, Tensor) |
| |
| Multiplies `mat` by the orthogonal `Q` matrix of the QR factorization |
| formed by :func:`torch.geqrf` that is represented by `(a, tau)`. |
| |
| This directly calls the underlying LAPACK function `?ormqr`. |
| See `LAPACK documentation for ormqr`_ for further details. |
| |
| Args: |
| a (Tensor): the `a` from :func:`torch.geqrf`. |
| tau (Tensor): the `tau` from :func:`torch.geqrf`. |
| mat (Tensor): the matrix to be multiplied. |
| |
| .. _LAPACK documentation for ormqr: |
| https://software.intel.com/en-us/mkl-developer-reference-c-ormqr |
| |
| """) |
| |
| add_docstr(torch.potrf, r""" |
| potrf(a, upper=True, out=None) -> Tensor |
| |
| Computes the Cholesky decomposition of a symmetric positive-definite |
| matrix :math:`A`. |
| |
| If :attr:`upper` is ``True``, the returned matrix `U` is upper-triangular, and |
| the decomposition has the form: |
| |
| .. math:: |
| |
| A = U^TU |
| |
| If :attr:`upper` is ``False``, the returned matrix `L` is lower-triangular, and |
| the decomposition has the form: |
| |
| .. math:: |
| |
| A = LL^T |
| |
| Args: |
| a (Tensor): the input 2-D tensor, a symmetric positive-definite matrix |
| upper (bool, optional): flag that indicates whether to return the |
| upper or lower triangular matrix |
| out (Tensor, optional): the output matrix |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> u = torch.potrf(a) |
| >>> a |
| |
| 2.3563 3.2318 -0.9406 |
| 3.2318 4.9557 -2.1618 |
| -0.9406 -2.1618 2.2443 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> u |
| |
| 1.5350 2.1054 -0.6127 |
| 0.0000 0.7233 -1.2053 |
| 0.0000 0.0000 0.6451 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.mm(u.t(), u) |
| |
| 2.3563 3.2318 -0.9406 |
| 3.2318 4.9557 -2.1618 |
| -0.9406 -2.1618 2.2443 |
| [torch.FloatTensor of size (3,3)] |
| |
| """) |
| |
| add_docstr(torch.potri, r""" |
| potri(u, upper=True, out=None) -> Tensor |
| |
| Computes the inverse of a positive semidefinite matrix given its |
| Cholesky factor :attr:`u`: returns matrix `inv` |
| |
| If :attr:`upper` is ``True`` or not provided, :attr:`u` is upper |
| triangular such that: |
| |
| .. math:: |
| inv = (u^T u)^{-1} |
| |
| If :attr:`upper` is ``False``, :attr:`u` is lower triangular |
| such that: |
| |
| .. math:: |
| inv = (uu^{T})^{-1} |
| |
| Args: |
| u (Tensor): the input 2-D tensor, a upper or lower triangular |
| Cholesky factor |
| upper (bool, optional): whether to return a upper (default) or lower triangular matrix |
| out (Tensor, optional): the output tensor for `inv` |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> u = torch.potrf(a) |
| >>> a |
| |
| 2.3563 3.2318 -0.9406 |
| 3.2318 4.9557 -2.1618 |
| -0.9406 -2.1618 2.2443 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.potri(u) |
| |
| 12.5724 -10.1765 -4.5333 |
| -10.1765 8.5852 4.0047 |
| -4.5333 4.0047 2.4031 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> a.inverse() |
| |
| 12.5723 -10.1765 -4.5333 |
| -10.1765 8.5852 4.0047 |
| -4.5333 4.0047 2.4031 |
| [torch.FloatTensor of size (3,3)] |
| |
| """) |
| |
| add_docstr(torch.potrs, r""" |
| potrs(b, u, upper=True, out=None) -> Tensor |
| |
| Solves a linear system of equations with a positive semidefinite |
| matrix to be inverted given its Cholesky factor matrix :attr:`u`. |
| |
| If :attr:`upper` is ``True`` or not provided, :attr:`u` is upper triangular |
| and `c` is returned such that: |
| |
| .. math:: |
| c = (u^T u)^{-1} b |
| |
| If :attr:`upper` is ``False``, :attr:`u` is and lower triangular and `c` is |
| returned such that: |
| |
| .. math:: |
| c = (u u^T)^{-1} b |
| |
| .. note:: :attr:`b` is always a 2-D tensor, use `b.unsqueeze(1)` to convert a vector. |
| |
| Args: |
| b (Tensor): the right hand side 2-D tensor |
| u (Tensor): the input 2-D tensor, a upper or lower triangular Cholesky factor |
| upper (bool, optional): whether to return a upper (default) or lower triangular matrix |
| out (Tensor, optional): the output tensor for `c` |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> u = torch.potrf(a) |
| >>> a |
| |
| 2.3563 3.2318 -0.9406 |
| 3.2318 4.9557 -2.1618 |
| -0.9406 -2.1618 2.2443 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> b = torch.randn(3, 2) |
| >>> b |
| |
| -0.3119 -1.8224 |
| -0.2798 0.1789 |
| -0.3735 1.7451 |
| [torch.FloatTensor of size (3,2)] |
| |
| >>> torch.potrs(b,u) |
| |
| 0.6187 -32.6438 |
| -0.7234 27.0703 |
| -0.6039 13.1717 |
| [torch.FloatTensor of size (3,2)] |
| |
| >>> torch.mm(a.inverse(),b) |
| |
| 0.6187 -32.6436 |
| -0.7234 27.0702 |
| -0.6039 13.1717 |
| [torch.FloatTensor of size (3,2)] |
| |
| """) |
| |
| add_docstr(torch.pow, |
| r""" |
| .. function:: pow(input, exponent, out=None) -> Tensor |
| |
| Takes the power of each element in :attr:`input` with :attr:`exponent` and |
| returns a tensor with the result. |
| |
| :attr:`exponent` can be either a single ``float`` number or a `Tensor` |
| with the same number of elements as :attr:`input`. |
| |
| When :attr:`exponent` is a scalar value, the operation applied is: |
| |
| .. math:: |
| out_i = x_i ^ {exponent} |
| |
| When :attr:`exponent` is a tensor, the operation applied is: |
| |
| .. math:: |
| out_i = x_i ^ {exponent_i} |
| |
| When :attr:`exponent` is a tensor, the shapes of :attr:`input` |
| and :attr:`exponent` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| exponent (float or tensor): the exponent value |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.5274 |
| -0.8232 |
| -2.1128 |
| 1.7558 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.pow(a, 2) |
| |
| 0.2781 |
| 0.6776 |
| 4.4640 |
| 3.0829 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> exp = torch.arange(1, 5) |
| >>> a = torch.arange(1, 5) |
| >>> a |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> exp |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.pow(a, exp) |
| |
| 1 |
| 4 |
| 27 |
| 256 |
| [torch.FloatTensor of size (4,)] |
| |
| |
| .. function:: pow(base, input, out=None) -> Tensor |
| |
| :attr:`base` is a scalar ``float`` value, and :attr:`input` is a tensor. |
| The returned tensor :attr:`out` is of the same shape as :attr:`input` |
| |
| The operation applied is: |
| |
| .. math:: |
| out_i = base ^ {input_i} |
| |
| Args: |
| base (float): the scalar base value for the power operation |
| input (Tensor): the exponent tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> exp = torch.arange(1, 5) |
| >>> base = 2 |
| >>> torch.pow(base, exp) |
| |
| 2 |
| 4 |
| 8 |
| 16 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.prod, |
| r""" |
| .. function:: prod(input) -> Tensor |
| |
| Returns the product of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.7624 -0.4892 -0.1841 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.prod(a) |
| |
| 1.00000e-02 * |
| 6.8676 |
| [torch.FloatTensor of size ()] |
| |
| |
| .. function:: prod(input, dim, keepdim=False, out=None) -> Tensor |
| |
| Returns the product of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 2) |
| >>> a |
| |
| 0.1598 -0.6884 |
| -0.1831 -0.4412 |
| -0.9925 -0.6244 |
| -0.2416 -0.8080 |
| [torch.FloatTensor of size (4,2)] |
| |
| >>> torch.prod(a, 1) |
| |
| -0.1100 |
| 0.0808 |
| 0.6197 |
| 0.1952 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.pstrf, r""" |
| pstrf(a, upper=True, out=None) -> (Tensor, Tensor) |
| |
| Computes the pivoted Cholesky decomposition of a positive semidefinite |
| matrix :attr:`a`. returns matrices `u` and `piv`. |
| |
| If :attr:`upper` is ``True`` or not provided, `u` is upper triangular |
| such that :math:`a = p^T u^T u p`, with `p` the permutation given by `piv`. |
| |
| If :attr:`upper` is ``False``, `u` is lower triangular such that |
| :math:`a = p^T u u^T p`. |
| |
| Args: |
| a (Tensor): the input 2-D tensor |
| upper (bool, optional): whether to return a upper (default) or lower triangular matrix |
| out (tuple, optional): tuple of `u` and `piv` tensors |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> a |
| |
| 5.4417 -2.5280 1.3643 |
| -2.5280 2.9689 -2.1368 |
| 1.3643 -2.1368 4.6116 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> u,piv = torch.pstrf(a) |
| >>> u |
| |
| 2.3328 0.5848 -1.0837 |
| 0.0000 2.0663 -0.7274 |
| 0.0000 0.0000 1.1249 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> piv |
| |
| 0 |
| 2 |
| 1 |
| [torch.IntTensor of size (3,)] |
| |
| >>> p = torch.eye(3).index_select(0,piv.long()).index_select(0,piv.long()).t() # make pivot permutation |
| >>> torch.mm(torch.mm(p.t(),torch.mm(u.t(),u)),p) # reconstruct |
| |
| 5.4417 1.3643 -2.5280 |
| 1.3643 4.6116 -2.1368 |
| -2.5280 -2.1368 2.9689 |
| [torch.FloatTensor of size (3,3)] |
| |
| """) |
| |
| add_docstr(torch.qr, |
| r""" |
| qr(input, out=None) -> (Tensor, Tensor) |
| |
| Computes the QR decomposition of a matrix :attr:`input`, and returns matrices |
| `Q` and `R` such that :math:`\text{input} = Q R`, with :math:`Q` being an |
| orthogonal matrix and :math:`R` being an upper triangular matrix. |
| |
| This returns the thin (reduced) QR factorization. |
| |
| .. note:: precision may be lost if the magnitudes of the elements of :attr:`input` |
| are large |
| |
| .. note:: While it should always give you a valid decomposition, it may not |
| give you the same one across platforms - it will depend on your |
| LAPACK implementation. |
| |
| .. note:: Irrespective of the original strides, the returned matrix :math:`Q` will be |
| transposed, i.e. with strides `(1, m)` instead of `(m, 1)`. |
| |
| Args: |
| input (Tensor): the input 2-D tensor |
| out (tuple, optional): tuple of `Q` and `R` tensors |
| |
| Example:: |
| |
| >>> a = torch.Tensor([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) |
| >>> q, r = torch.qr(a) |
| >>> q |
| |
| -0.8571 0.3943 0.3314 |
| -0.4286 -0.9029 -0.0343 |
| 0.2857 -0.1714 0.9429 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> r |
| |
| -14.0000 -21.0000 14.0000 |
| 0.0000 -175.0000 70.0000 |
| 0.0000 0.0000 -35.0000 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.mm(q, r).round() |
| |
| 12 -51 4 |
| 6 167 -68 |
| -4 24 -41 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.mm(q.t(), q).round() |
| |
| 1 -0 0 |
| -0 1 0 |
| 0 0 1 |
| [torch.FloatTensor of size (3,3)] |
| |
| """) |
| |
| add_docstr(torch.rand, |
| r""" |
| rand(*sizes, out=None) -> Tensor |
| |
| Returns a tensor filled with random numbers from a uniform distribution |
| on the interval :math:`[0, 1)` |
| |
| The shape of the tensor is defined by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a set of ints defining the shape of the output tensor. |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.rand(4) |
| |
| 0.9193 |
| 0.3347 |
| 0.3232 |
| 0.7715 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.rand(2, 3) |
| |
| 0.5010 0.5140 0.0719 |
| 0.1435 0.5636 0.0538 |
| [torch.FloatTensor of size (2,3)] |
| |
| """) |
| |
| add_docstr(torch.randint, |
| r""" |
| randint(low=0, high, sizes, out=None, dtype=torch.float32) -> Tensor |
| |
| Returns a tensor filled with random integers generated uniformly |
| between :attr:`low` (inclusive) and :attr:`high` (exclusive). |
| |
| The shape of the tensor is defined by the variable argument :attr:`sizes`. |
| |
| Args: |
| low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. |
| high (int): One above the highest integer to be drawn from the distribution. |
| sizes (tuple): a tuple defining the shape of the output tensor. |
| out (Tensor, optional): the output tensor |
| dtype (:class:`torch.dtype`, optional): the desired type of returned Tensor. Default: torch.float32 |
| |
| Example:: |
| |
| >>> torch.randint(3, 5, (3,)) |
| |
| 4 |
| 4 |
| 3 |
| [torch.FloatTensor of size (3,)] |
| |
| >>> torch.randint(3, 10, (2,2), dtype=torch.long) |
| |
| 7 5 |
| 9 4 |
| [torch.LongTensor of size (2,2)] |
| |
| >>> torch.randint(3, 10, (2,2)) |
| |
| 6 8 |
| 9 4 |
| [torch.FloatTensor of size (2,2)] |
| |
| """) |
| |
| add_docstr(torch.randn, |
| r""" |
| randn(*sizes, out=None) -> Tensor |
| |
| Returns a tensor filled with random numbers from a normal distribution |
| with zero mean and variance of one (also called the standard normal |
| distribution). |
| |
| .. math:: |
| \text{out}_{i} \sim \mathcal{N}(0, 1) |
| |
| The shape of the tensor is defined by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a set of ints defining the shape of the output tensor. |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.randn(4) |
| |
| -0.1145 |
| 0.0094 |
| -1.1717 |
| 0.9846 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.randn(2, 3) |
| |
| 1.4339 0.3351 -1.0999 |
| 1.5458 -0.9643 -0.3558 |
| [torch.FloatTensor of size (2,3)] |
| |
| """) |
| |
| add_docstr(torch.randperm, |
| r""" |
| randperm(n, out=None) -> LongTensor |
| |
| Returns a random permutation of integers from ``0`` to ``n - 1``. |
| |
| Args: |
| n (int): the upper bound (exclusive) |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.randperm(4) |
| |
| 2 |
| 1 |
| 3 |
| 0 |
| [torch.LongTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.range, |
| r""" |
| range(start, end, step=1, out=None) -> Tensor |
| |
| Returns a 1-D tensor of size :math:`\left\lfloor \frac{end - start}{step} \right\rfloor + 1` |
| with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is |
| the gap between two values in the tensor. |
| |
| .. math:: |
| \text{out}_{i+1} = \text{out}_i + step. |
| |
| .. warning:: |
| This function is deprecated in favor of :func:`torch.arange`. |
| |
| Args: |
| start (float): the starting value for the set of points |
| end (float): the ending value for the set of points |
| step (float): the gap between each pair of adjacent points |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.range(1, 4) |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.range(1, 4, 0.5) |
| |
| 1.0000 |
| 1.5000 |
| 2.0000 |
| 2.5000 |
| 3.0000 |
| 3.5000 |
| 4.0000 |
| [torch.FloatTensor of size (7,)] |
| |
| """) |
| |
| add_docstr(torch.arange, |
| r""" |
| arange(start=0, end, step=1, out=None) -> Tensor |
| |
| Returns a 1-D tensor of size :math:`\left\lfloor \frac{end - start}{step} \right\rfloor` |
| with values from the interval ``[start, end)`` taken with common difference |
| :attr:`step` beginning from `start`. |
| |
| Note that non-integer `step` is subject to floating point rounding errors when |
| comparing against `end`; to avoid inconsistency, we advise adding a small epsilon to `end` |
| in such cases. |
| |
| .. math:: |
| \text{out}_{i+1} = \text{out}_{i} + \text{step} |
| |
| Args: |
| start (float): the starting value for the set of points |
| end (float): the ending value for the set of points |
| step (float): the gap between each pair of adjacent points |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.arange(5) |
| |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.arange(1, 4) |
| |
| 1 |
| 2 |
| 3 |
| [torch.FloatTensor of size (3,)] |
| |
| >>> torch.arange(1, 2.5, 0.5) |
| |
| 1.0000 |
| 1.5000 |
| 2.0000 |
| [torch.FloatTensor of size (3,)] |
| |
| """) |
| |
| |
| add_docstr(torch.remainder, |
| r""" |
| remainder(input, divisor, out=None) -> Tensor |
| |
| Computes the element-wise remainder of division. |
| |
| The divisor and dividend may contain both for integer and floating point |
| numbers. The remainder has the same sign as the divisor. |
| |
| When :attr:`divisor` is a tensor, the shapes of :attr:`input` and |
| :attr:`divisor` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the dividend |
| divisor (Tensor or float): the divisor that may be either a number or a |
| Tensor of the same shape as the dividend |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.remainder(torch.Tensor([-3, -2, -1, 1, 2, 3]), 2) |
| |
| 1 |
| 0 |
| 1 |
| 1 |
| 0 |
| 1 |
| [torch.FloatTensor of size (6,)] |
| |
| >>> torch.remainder(torch.Tensor([1, 2, 3, 4, 5]), 1.5) |
| |
| 1.0000 |
| 0.5000 |
| 0.0000 |
| 1.0000 |
| 0.5000 |
| [torch.FloatTensor of size (5,)] |
| |
| .. seealso:: |
| |
| :func:`torch.fmod`, which computes the element-wise remainder of |
| division equivalently to the C library function ``fmod()``. |
| """) |
| |
| add_docstr(torch.renorm, |
| r""" |
| renorm(input, p, dim, maxnorm, out=None) -> Tensor |
| |
| Returns a tensor where each sub-tensor of :attr:`input` along dimension |
| :attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower |
| than the value :attr:`maxnorm` |
| |
| .. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged |
| |
| Args: |
| input (Tensor): the input tensor |
| p (float): the power for the norm computation |
| dim (int): the dimension to slice over to get the sub-tensors |
| maxnorm (float): the maximum norm to keep each sub-tensor under |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.ones(3, 3) |
| >>> x[1].fill_(2) |
| >>> x[2].fill_(3) |
| >>> x |
| |
| 1 1 1 |
| 2 2 2 |
| 3 3 3 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.renorm(x, 1, 0, 5) |
| |
| 1.0000 1.0000 1.0000 |
| 1.6667 1.6667 1.6667 |
| 1.6667 1.6667 1.6667 |
| [torch.FloatTensor of size (3,3)] |
| |
| """) |
| |
| add_docstr(torch.reshape, |
| r""" |
| reshape(input, shape) -> Tensor |
| |
| Returns a tensor with the same data and number of elements as :attr:`input`, |
| but with the specified shape. When possible, the returned tensor will be a view |
| of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs |
| with compatible strides can be reshaped without copying, but you should not |
| depend on the copying vs. viewing behavior. |
| |
| A single dimension may be -1, in which case it's inferred from the remaining |
| dimensions and the number of elements in :attr:`input`. |
| |
| Args: |
| input (Tensor): the tensor to be reshaped |
| shape (tuple of ints): the new shape |
| |
| Example:: |
| |
| >>> a = torch.arange(4) |
| >>> torch.reshape(a, (2, 2)) |
| 0 1 |
| 2 3 |
| [torch.FloatTensor of size (2,2)] |
| |
| >>> b = torch.tensor([[0, 1], [2, 3]]) |
| >>> torch.reshape(b, (-1,)) |
| 0 |
| 1 |
| 2 |
| 3 |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| |
| add_docstr(torch.round, |
| r""" |
| round(input, out=None) -> Tensor |
| |
| Returns a new tensor with each of the elements of :attr:`input` rounded |
| to the closest integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.2290 |
| 1.3409 |
| -0.5662 |
| -0.0899 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.round(a) |
| |
| 1 |
| 1 |
| -1 |
| -0 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.rsqrt, |
| r""" |
| rsqrt(input, out=None) -> Tensor |
| |
| Returns a new tensor with the reciprocal of the square-root of each of |
| the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.2290 |
| 1.3409 |
| -0.5662 |
| -0.0899 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.rsqrt(a) |
| |
| 0.9020 |
| 0.8636 |
| nan |
| nan |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.set_flush_denormal, |
| r""" |
| set_flush_denormal(mode) -> bool |
| |
| Disables denormal floating numbers on CPU. |
| |
| Returns ``True`` if your system supports flushing denormal numbers and it |
| successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal` |
| is only supported on x86 architectures supporting SSE3. |
| |
| Args: |
| mode (bool): Controls whether to enable flush denormal mode or not |
| |
| Example:: |
| |
| >>> torch.set_flush_denormal(True) |
| True |
| >>> torch.DoubleTensor([1e-323]) |
| |
| 0 |
| [torch.DoubleTensor of size (1,)] |
| |
| >>> torch.set_flush_denormal(False) |
| True |
| >>> torch.DoubleTensor([1e-323]) |
| |
| 9.88131e-324 * |
| 1.0000 |
| [torch.DoubleTensor of size (1,)] |
| |
| """) |
| |
| add_docstr(torch.set_num_threads, |
| r""" |
| set_num_threads(int) |
| |
| Sets the number of OpenMP threads used for parallelizing CPU operations |
| """) |
| |
| add_docstr(torch.sigmoid, |
| r""" |
| sigmoid(input, out=None) -> Tensor |
| |
| Returns a new tensor with the sigmoid of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.4972 |
| 1.3512 |
| 0.1056 |
| -0.2650 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.sigmoid(a) |
| |
| 0.3782 |
| 0.7943 |
| 0.5264 |
| 0.4341 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.sign, |
| r""" |
| sign(input, out=None) -> Tensor |
| |
| Returns a new tensor with the sign of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.sign(a) |
| |
| -1 |
| 1 |
| 1 |
| 1 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.sin, |
| r""" |
| sin(input, out=None) -> Tensor |
| |
| Returns a new tensor with the sine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sin(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.sin(a) |
| |
| -0.5944 |
| 0.2684 |
| 0.4322 |
| 0.9667 |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.sinh, |
| r""" |
| sinh(input, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic sine of the elements of |
| :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sinh(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.sinh(a) |
| |
| -0.6804 |
| 0.2751 |
| 0.4619 |
| 1.7225 |
| [torch.FloatTensor of size (4,)] |
| """) |
| |
| add_docstr(torch.sort, |
| r""" |
| sort(input, dim=None, descending=False, out=None) -> (Tensor, LongTensor) |
| |
| Sorts the elements of the :attr:`input` tensor along a given dimension |
| in ascending order by value. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`descending` is ``True`` then the elements are sorted in descending |
| order by value. |
| |
| A tuple of (sorted_tensor, sorted_indices) is returned, where the |
| sorted_indices are the indices of the elements in the original `input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int, optional): the dimension to sort along |
| descending (bool, optional): controls the sorting order (ascending or descending) |
| out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can |
| be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> sorted, indices = torch.sort(x) |
| >>> sorted |
| |
| -1.6747 0.0610 0.1190 1.4137 |
| -1.4782 0.7159 1.0341 1.3678 |
| -0.3324 -0.0782 0.3518 0.4763 |
| [torch.FloatTensor of size (3,4)] |
| |
| >>> indices |
| |
| 0 1 3 2 |
| 2 1 0 3 |
| 3 1 0 2 |
| [torch.LongTensor of size (3,4)] |
| |
| >>> sorted, indices = torch.sort(x, 0) |
| >>> sorted |
| |
| -1.6747 -0.0782 -1.4782 -0.3324 |
| 0.3518 0.0610 0.4763 0.1190 |
| 1.0341 0.7159 1.4137 1.3678 |
| [torch.FloatTensor of size (3,4)] |
| |
| >>> indices |
| |
| 0 2 1 2 |
| 2 0 2 0 |
| 1 1 0 1 |
| [torch.LongTensor of size (3,4)] |
| |
| """) |
| |
| add_docstr(torch.sqrt, |
| r""" |
| sqrt(input, out=None) -> Tensor |
| |
| Returns a new tensor with the square-root of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sqrt{\text{input}_{i}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.2290 |
| 1.3409 |
| -0.5662 |
| -0.0899 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.sqrt(a) |
| |
| 1.1086 |
| 1.1580 |
| nan |
| nan |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.squeeze, |
| r""" |
| squeeze(input, dim=None, out=None) -> Tensor |
| |
| Returns a tensor with all the dimensions of :attr:`input` of size `1` removed. |
| |
| For example, if `input` is of shape: |
| :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `out` tensor |
| will be of shape: :math:`(A \times B \times C \times D)`. |
| |
| When :attr:`dim` is given, a squeeze operation is done only in the given |
| dimension. If `input` is of shape: :math:`(A \times 1 \times B)`, |
| `squeeze(input, 0)` leaves the tensor unchanged, but :func:`squeeze(input, 1)` will |
| squeeze the tensor to the shape :math:`(A \times B)`. |
| |
| .. note:: As an exception to the above, a 1-dimensional tensor of size 1 will |
| not have its dimensions changed. |
| |
| .. note:: The returned tensor shares the storage with the input tensor, |
| so changing the contents of one will change the contents of the other. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int, optional): if given, the input will be squeezed only in |
| this dimension |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.zeros(2, 1, 2, 1, 2) |
| >>> x.size() |
| torch.Size([2, 1, 2, 1, 2]) |
| >>> y = torch.squeeze(x) |
| >>> y.size() |
| torch.Size([2, 2, 2]) |
| >>> y = torch.squeeze(x, 0) |
| >>> y.size() |
| torch.Size([2, 1, 2, 1, 2]) |
| >>> y = torch.squeeze(x, 1) |
| >>> y.size() |
| torch.Size([2, 2, 1, 2]) |
| """) |
| |
| add_docstr(torch.std, |
| r""" |
| .. function:: std(input, unbiased=True) -> Tensor |
| |
| Returns the standard-deviation of all elements in the :attr:`input` tensor. |
| |
| If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated |
| via the biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| unbiased (bool): whether to use the unbiased estimation or not |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.1665 0.4876 -0.2155 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.std(a) |
| |
| 0.3520 |
| [torch.FloatTensor of size ()] |
| |
| |
| |
| .. function:: std(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor |
| |
| Returns the standard-deviation of each row of the :attr:`input` tensor in the |
| given dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated |
| via the biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| unbiased (bool): whether to use the unbiased estimation or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| 0.1889 -2.4856 0.0043 1.8169 |
| -0.7701 -0.4682 -2.2410 0.4098 |
| 0.1919 -1.1856 -1.0361 0.9085 |
| 0.0173 1.0662 0.2143 -0.5576 |
| [torch.FloatTensor of size (4,4)] |
| |
| >>> torch.std(a, dim=1) |
| |
| 1.7756 |
| 1.1025 |
| 1.0045 |
| 0.6725 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.sum, |
| r""" |
| .. function:: sum(input) -> Tensor |
| |
| Returns the sum of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| -0.0281 1.0131 -0.0384 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.sum(a) |
| |
| 0.9466 |
| [torch.FloatTensor of size ()] |
| |
| |
| .. function:: sum(input, dim, keepdim=False, out=None) -> Tensor |
| |
| Returns the sum of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -0.4640 0.0609 0.1122 0.4784 |
| -1.3063 1.6443 0.4714 -0.7396 |
| -1.3561 -0.1959 1.0609 -1.9855 |
| 2.6833 0.5746 -0.5709 -0.4430 |
| [torch.FloatTensor of size (4,4)] |
| |
| >>> torch.sum(a, 1) |
| |
| 0.1874 |
| 0.0698 |
| -2.4767 |
| 2.2440 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.svd, |
| r""" |
| svd(input, some=True, out=None) -> (Tensor, Tensor, Tensor) |
| |
| `U, S, V = torch.svd(A)` returns the singular value decomposition of a |
| real matrix `A` of size `(n x m)` such that :math:`A = USV^T`. |
| |
| `U` is of shape :math:`(n \times n)`. |
| |
| `S` is a diagonal matrix of shape :math:`(n \times m)`, represented as a vector |
| of size :math:`\min(n, m)` containing the non-negative diagonal entries. |
| |
| `V` is of shape :math:`(m \times m)`. |
| |
| If :attr:`some` is ``True`` (default), the returned `U` and `V` matrices will |
| contain only :math:`min(n, m)` orthonormal columns. |
| |
| .. note:: Irrespective of the original strides, the returned matrix `U` |
| will be transposed, i.e. with strides `(1, n)` instead of `(n, 1)`. |
| |
| .. note:: Extra care needs to be taken when backward through `U` and `V` |
| outputs. Such operation is really only stable when :attr:`input` is |
| full rank with all distinct singular values. Otherwise, ``NaN`` can |
| appear as the gradients are not properly defined. Also, notice that |
| double backward will usually do an additional backward through `U` and |
| `V` even if the original backward is only on `S`. |
| |
| .. note:: When :attr:`some` = ``False``, the gradients on ``U[:, min(n, m):]`` |
| and ``V[:, min(n, m):]`` will be ignored in backward as those vectors |
| can be arbitrary bases of the subspaces. |
| |
| Args: |
| input (Tensor): the input 2-D tensor |
| some (bool, optional): controls the shape of returned `U` and `V` |
| out (tuple, optional): the output tuple of tensors |
| |
| Example:: |
| |
| >>> a = torch.Tensor([[8.79, 6.11, -9.15, 9.57, -3.49, 9.84], |
| [9.93, 6.91, -7.93, 1.64, 4.02, 0.15], |
| [9.83, 5.04, 4.86, 8.83, 9.80, -8.99], |
| [5.45, -0.27, 4.85, 0.74, 10.00, -6.02], |
| [3.16, 7.98, 3.01, 5.80, 4.27, -5.31]]).t() |
| |
| >>> u, s, v = torch.svd(a) |
| >>> u |
| |
| -0.5911 0.2632 0.3554 0.3143 0.2299 |
| -0.3976 0.2438 -0.2224 -0.7535 -0.3636 |
| -0.0335 -0.6003 -0.4508 0.2334 -0.3055 |
| -0.4297 0.2362 -0.6859 0.3319 0.1649 |
| -0.4697 -0.3509 0.3874 0.1587 -0.5183 |
| 0.2934 0.5763 -0.0209 0.3791 -0.6526 |
| [torch.FloatTensor of size (6,5)] |
| |
| >>> s |
| |
| 27.4687 |
| 22.6432 |
| 8.5584 |
| 5.9857 |
| 2.0149 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> v |
| |
| -0.2514 0.8148 -0.2606 0.3967 -0.2180 |
| -0.3968 0.3587 0.7008 -0.4507 0.1402 |
| -0.6922 -0.2489 -0.2208 0.2513 0.5891 |
| -0.3662 -0.3686 0.3859 0.4342 -0.6265 |
| -0.4076 -0.0980 -0.4932 -0.6227 -0.4396 |
| [torch.FloatTensor of size (5,5)] |
| |
| >>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t())) |
| |
| 1.00000e-05 * |
| 1.0918 |
| [torch.FloatTensor of size ()] |
| |
| """) |
| |
| add_docstr(torch.symeig, |
| r""" |
| symeig(input, eigenvectors=False, upper=True, out=None) -> (Tensor, Tensor) |
| |
| This function returns eigenvalues and eigenvectors |
| of a real symmetric matrix :attr:`input`, represented by a tuple :math:`(e, V)`. |
| |
| :attr:`input` and :math:`V` are :math:`(m \times m)` matrices and :math:`e` is a |
| :math:`m` dimensional vector. |
| |
| This function calculates all eigenvalues (and vectors) of :attr:`input` |
| such that :math:`input = V diag(e) V^T`. |
| |
| The boolean argument :attr:`eigenvectors` defines computation of |
| eigenvectors or eigenvalues only. |
| |
| If it is ``False``, only eigenvalues are computed. If it is ``True``, |
| both eigenvalues and eigenvectors are computed. |
| |
| Since the input matrix :attr:`input` is supposed to be symmetric, |
| only the upper triangular portion is used by default. |
| |
| If :attr:`upper` is ``False``, then lower triangular portion is used. |
| |
| Note: Irrespective of the original strides, the returned matrix `V` will |
| be transposed, i.e. with strides `(1, m)` instead of `(m, 1)`. |
| |
| Args: |
| input (Tensor): the input symmetric matrix |
| eigenvectors(boolean, optional): controls whether eigenvectors have to be computed |
| upper(boolean, optional): controls whether to consider upper-triangular or lower-triangular region |
| out (tuple, optional): the output tuple of (Tensor, Tensor) |
| |
| Examples:: |
| |
| |
| >>> a = torch.Tensor([[ 1.96, 0.00, 0.00, 0.00, 0.00], |
| [-6.49, 3.80, 0.00, 0.00, 0.00], |
| [-0.47, -6.39, 4.17, 0.00, 0.00], |
| [-7.20, 1.50, -1.51, 5.70, 0.00], |
| [-0.65, -6.34, 2.67, 1.80, -7.10]]).t() |
| |
| >>> e, v = torch.symeig(a, eigenvectors=True) |
| >>> e |
| |
| -11.0656 |
| -6.2287 |
| 0.8640 |
| 8.8655 |
| 16.0948 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> v |
| |
| -0.2981 -0.6075 0.4026 -0.3745 0.4896 |
| -0.5078 -0.2880 -0.4066 -0.3572 -0.6053 |
| -0.0816 -0.3843 -0.6600 0.5008 0.3991 |
| -0.0036 -0.4467 0.4553 0.6204 -0.4564 |
| -0.8041 0.4480 0.1725 0.3108 0.1622 |
| [torch.FloatTensor of size (5,5)] |
| |
| """) |
| |
| add_docstr(torch.t, |
| r""" |
| t(input, out=None) -> Tensor |
| |
| Expects :attr:`input` to be a matrix (2-D tensor) and transposes dimensions 0 |
| and 1. |
| |
| Can be seen as a short-hand function for :meth:`transpose(input, 0, 1)` |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| |
| 0.4834 0.6907 1.3417 |
| -0.1300 0.5295 0.2321 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> torch.t(x) |
| |
| 0.4834 -0.1300 |
| 0.6907 0.5295 |
| 1.3417 0.2321 |
| [torch.FloatTensor of size (3,2)] |
| |
| """) |
| |
| add_docstr(torch.take, |
| r""" |
| take(input, indices) -> Tensor |
| |
| Returns a new tensor with the elements of :attr:`input` at the given indices. |
| The input tensor is treated as if it were viewed as a 1-D tensor. The result |
| takes the same shape as the indices. |
| |
| Args: |
| input (Tensor): the input tensor |
| indices (LongTensor): the indices into tensor |
| |
| Example:: |
| |
| >>> src = torch.Tensor([[4, 3, 5], |
| [6, 7, 8]]) |
| >>> torch.take(src, torch.LongTensor([0, 2, 5])) |
| |
| 4 |
| 5 |
| 8 |
| [torch.FloatTensor of size (3,)] |
| |
| """) |
| |
| add_docstr(torch.tan, |
| r""" |
| tan(input, out=None) -> Tensor |
| |
| Returns a new tensor with the tangent of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tan(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.tan(a) |
| |
| -0.7392 |
| 0.2786 |
| 0.4792 |
| 3.7801 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.tanh, |
| r""" |
| tanh(input, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic tangent of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tanh(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.tanh(a) |
| |
| -0.5625 |
| 0.2653 |
| 0.4193 |
| 0.8648 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.topk, |
| r""" |
| topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) |
| |
| Returns the :attr:`k` largest elements of the given :attr:`input` tensor along |
| a given dimension. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`largest` is ``False`` then the `k` smallest elements are returned. |
| |
| A tuple of `(values, indices)` is returned, where the `indices` are the indices |
| of the elements in the original `input` tensor. |
| |
| The boolean option :attr:`sorted` if ``True``, will make sure that the returned |
| `k` elements are themselves sorted |
| |
| Args: |
| input (Tensor): the input tensor |
| k (int): the k in "top-k" |
| dim (int, optional): the dimension to sort along |
| largest (bool, optional): controls whether to return largest or |
| smallest elements |
| sorted (bool, optional): controls whether to return the elements |
| in sorted order |
| out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be |
| optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.arange(1, 6) |
| >>> x |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| [torch.FloatTensor of size (5,)] |
| |
| >>> torch.topk(x, 3) |
| ( |
| 5 |
| 4 |
| 3 |
| [torch.FloatTensor of size (3,)] |
| , |
| 4 |
| 3 |
| 2 |
| [torch.LongTensor of size (3,)] |
| ) |
| >>> torch.topk(x, 3, 0, largest=False) |
| ( |
| 1 |
| 2 |
| 3 |
| [torch.FloatTensor of size (3,)] |
| , |
| 0 |
| 1 |
| 2 |
| [torch.LongTensor of size (3,)] |
| ) |
| |
| """) |
| |
| add_docstr(torch.trace, |
| r""" |
| trace(input) -> Tensor |
| |
| Returns the sum of the elements of the diagonal of the input 2-D matrix. |
| |
| Example:: |
| |
| >>> x = torch.arange(1, 10).view(3, 3) |
| >>> x |
| |
| 1 2 3 |
| 4 5 6 |
| 7 8 9 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.trace(x) |
| |
| 15 |
| [torch.FloatTensor of size ()] |
| |
| |
| """) |
| |
| add_docstr(torch.transpose, |
| r""" |
| transpose(input, dim0, dim1, out=None) -> Tensor |
| |
| Returns a tensor that is a transposed version of :attr:`input`. |
| The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. |
| |
| The resulting :attr:`out` tensor shares it's underlying storage with the |
| :attr:`input` tensor, so changing the content of one would change the content |
| of the other. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim0 (int): the first dimension to be transposed |
| dim1 (int): the second dimension to be transposed |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> torch.transpose(x, 0, 1) |
| |
| 0.5983 1.5981 |
| -0.0341 -0.5265 |
| 2.4918 -0.8735 |
| [torch.FloatTensor of size (3,2)] |
| |
| """) |
| |
| add_docstr(torch.tril, |
| r""" |
| tril(input, diagonal=0, out=None) -> Tensor |
| |
| Returns the lower triangular part of the matrix (2-D tensor) :attr:`input`, |
| the other elements of the result tensor :attr:`out` are set to 0. |
| |
| The lower triangular part of the matrix is defined as the elements on and |
| below the diagonal. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider. If |
| :attr:`diagonal` = 0, all elements on and below the main diagonal are |
| retained. A positive value includes just as many diagonals above the main |
| diagonal, and similarly a negative value excludes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where |
| :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| |
| Args: |
| input (Tensor): the input tensor |
| diagonal (int, optional): the diagonal to consider |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| |
| 1.3225 1.7304 1.4573 |
| -0.3052 -0.3111 -0.1809 |
| 1.2469 0.0064 -1.6250 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.tril(a) |
| |
| 1.3225 0.0000 0.0000 |
| -0.3052 -0.3111 0.0000 |
| 1.2469 0.0064 -1.6250 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> b = torch.randn(4, 6) |
| >>> b |
| |
| 0.2762 0.1640 0.3947 -0.8633 -0.4150 2.4491 |
| -2.8177 -1.0580 0.3659 -0.0797 0.2294 1.3660 |
| -1.8665 -0.4127 -0.7031 -0.4697 -0.2383 -0.1321 |
| 1.0998 0.2726 0.2512 0.4557 0.7012 -0.9356 |
| [torch.FloatTensor of size (4,6)] |
| |
| >>> torch.tril(b, diagonal=1) |
| |
| 0.2762 0.1640 0.0000 0.0000 0.0000 0.0000 |
| -2.8177 -1.0580 0.3659 0.0000 0.0000 0.0000 |
| -1.8665 -0.4127 -0.7031 -0.4697 0.0000 0.0000 |
| 1.0998 0.2726 0.2512 0.4557 0.7012 0.0000 |
| [torch.FloatTensor of size (4,6)] |
| |
| >>> torch.tril(b, diagonal=-1) |
| |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| -2.8177 0.0000 0.0000 0.0000 0.0000 0.0000 |
| -1.8665 -0.4127 0.0000 0.0000 0.0000 0.0000 |
| 1.0998 0.2726 0.2512 0.0000 0.0000 0.0000 |
| [torch.FloatTensor of size (4,6)] |
| |
| """) |
| |
| add_docstr(torch.triu, |
| r""" |
| triu(input, diagonal=0, out=None) -> Tensor |
| |
| Returns the upper triangular part of the matrix (2-D tensor) :attr:`input`, |
| the other elements of the result tensor :attr:`out` are set to 0. |
| |
| The upper triangular part of the matrix is defined as the elements on and |
| above the diagonal. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider. If |
| :attr:`diagonal` = 0, all elements on and below the main diagonal are |
| retained. A positive value excludes just as many diagonals above the main |
| diagonal, and similarly a negative value includes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where |
| :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| |
| Args: |
| input (Tensor): the input tensor |
| diagonal (int, optional): the diagonal to consider |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| |
| 1.3225 1.7304 1.4573 |
| -0.3052 -0.3111 -0.1809 |
| 1.2469 0.0064 -1.6250 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.triu(a) |
| |
| 1.3225 1.7304 1.4573 |
| 0.0000 -0.3111 -0.1809 |
| 0.0000 0.0000 -1.6250 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.triu(a, diagonal=1) |
| |
| 0.0000 1.7304 1.4573 |
| 0.0000 0.0000 -0.1809 |
| 0.0000 0.0000 0.0000 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> torch.triu(a, diagonal=-1) |
| |
| 1.3225 1.7304 1.4573 |
| -0.3052 -0.3111 -0.1809 |
| 0.0000 0.0064 -1.6250 |
| [torch.FloatTensor of size (3,3)] |
| |
| >>> b = torch.randn(4, 6) |
| >>> b |
| |
| 0.2762 0.1640 0.3947 -0.8633 -0.4150 2.4491 |
| -2.8177 -1.0580 0.3659 -0.0797 0.2294 1.3660 |
| -1.8665 -0.4127 -0.7031 -0.4697 -0.2383 -0.1321 |
| 1.0998 0.2726 0.2512 0.4557 0.7012 -0.9356 |
| [torch.FloatTensor of size (4,6)] |
| |
| >>> torch.tril(b, diagonal=1) |
| |
| 0.0000 0.1640 0.3947 -0.8633 -0.4150 2.4491 |
| 0.0000 0.0000 0.3659 -0.0797 0.2294 1.3660 |
| 0.0000 0.0000 0.0000 -0.4697 -0.2383 -0.1321 |
| 0.0000 0.0000 0.0000 0.0000 0.7012 -0.9356 |
| [torch.FloatTensor of size (4,6)] |
| |
| >>> torch.tril(a, diagonal=-1) |
| |
| 0.2762 0.1640 0.3947 -0.8633 -0.4150 2.4491 |
| -2.8177 -1.0580 0.3659 -0.0797 0.2294 1.3660 |
| 0.0000 -0.4127 -0.7031 -0.4697 -0.2383 -0.1321 |
| 0.0000 0.0000 0.2512 0.4557 0.7012 -0.9356 |
| [torch.FloatTensor of size (4,6)] |
| |
| """) |
| |
| add_docstr(torch.trtrs, |
| r""" |
| trtrs(b, A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) |
| |
| Solves a system of equations with a triangular coefficient matrix `A` |
| and multiple right-hand sides `b`. |
| |
| In particular, solves :math:`AX = b` and assumes `A` is upper-triangular |
| with the default keyword arguments. |
| |
| This method is NOT implemented for CUDA tensors. |
| |
| Args: |
| A (Tensor): the input triangular coefficient matrix |
| b (Tensor): multiple right-hand sides. Each column of `b` is a |
| right-hand side for the system of equations. |
| upper (bool, optional): whether to solve the upper-triangular system |
| of equations (default) or the lower-triangular system of equations. Default: True. |
| transpose (bool, optional): whether `A` should be transposed before |
| being sent into the solver. Default: False. |
| unitriangular (bool, optional): whether `A` is unit triangular. |
| If True, the diagonal elements of `A` are assumed to be |
| 1 and not referenced from `A`. Default: False. |
| |
| Returns: |
| A tuple (X, M) where `M` is a clone of `A` and `X` is the solution to |
| `AX = b` (or whatever variant of the system of equations, depending on |
| the keyword arguments.) |
| |
| Shape: |
| - A: :math:`(N, N)` |
| - b: :math:`(N, C)` |
| - output[0]: :math:`(N, C)` |
| - output[1]: :math:`(N, N)` |
| |
| Examples:: |
| |
| >>> A = torch.randn(2, 2).triu() |
| >>> A |
| |
| -1.8793 0.1567 |
| 0.0000 -2.1972 |
| [torch.FloatTensor of size (2,2)] |
| |
| >>> b = torch.randn(2, 3) |
| >>> b |
| |
| 1.8776 -0.0759 1.6590 |
| -0.5676 0.4771 0.7477 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> torch.trtrs(b, A) |
| ( |
| -0.9775 0.0223 -0.9112 |
| 0.2583 -0.2172 -0.3403 |
| [torch.FloatTensor of size (2,3)] |
| , |
| -1.8793 0.1567 |
| 0.0000 -2.1972 |
| [torch.FloatTensor of size (2,2)] |
| ) |
| |
| """) |
| |
| add_docstr(torch.trunc, |
| r""" |
| trunc(input, out=None) -> Tensor |
| |
| Returns a new tensor with the truncated integer values of |
| the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.4972 |
| 1.3512 |
| 0.1056 |
| -0.2650 |
| [torch.FloatTensor of size (4,)] |
| |
| >>> torch.trunc(a) |
| |
| -0 |
| 1 |
| 0 |
| -0 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.unsqueeze, |
| r""" |
| unsqueeze(input, dim, out=None) -> Tensor |
| |
| Returns a new tensor with a dimension of size one inserted at the |
| specified position. |
| |
| The returned tensor shares the same underlying data with this tensor. |
| |
| A negative `dim` value within the range |
| [-:attr:`input.dim()`, :attr:`input.dim()`) can be used and |
| will correspond to :meth:`unsqueeze` applied at :attr:`dim` = :attr:`dim + input.dim() + 1` |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the index at which to insert the singleton dimension |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.Tensor([1, 2, 3, 4]) |
| >>> torch.unsqueeze(x, 0) |
| |
| 1 2 3 4 |
| [torch.FloatTensor of size (1,4)] |
| |
| >>> torch.unsqueeze(x, 1) |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size (4,1)] |
| |
| """) |
| |
| add_docstr(torch.var, |
| r""" |
| .. function:: var(input, unbiased=True) -> Tensor |
| |
| Returns the variance of all elements in the :attr:`input` tensor. |
| |
| If :attr:`unbiased` is ``False``, then the variance will be calculated via the |
| biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| unbiased (bool): whether to use the unbiased estimation or not |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 1.4529 -0.0128 0.6240 |
| [torch.FloatTensor of size (1,3)] |
| |
| >>> torch.var(a) |
| |
| 0.5401 |
| [torch.FloatTensor of size ()] |
| |
| |
| .. function:: var(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor |
| |
| Returns the variance of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the outputs tensor having 1 fewer dimension than :attr:`input`. |
| |
| If :attr:`unbiased` is ``False``, then the variance will be calculated via the |
| biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| unbiased (bool): whether to use the unbiased estimation or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -1.2738 -0.3058 0.1230 -1.9615 |
| 0.8771 -0.5430 -0.9233 0.9879 |
| 1.4107 0.0317 -0.6823 0.2255 |
| -1.3854 0.4953 -0.2160 0.2435 |
| [torch.FloatTensor of size (4,4)] |
| |
| >>> torch.var(a, 1) |
| |
| 0.8859 |
| 0.9509 |
| 0.7548 |
| 0.6949 |
| [torch.FloatTensor of size (4,)] |
| |
| """) |
| |
| add_docstr(torch.zeros, |
| r""" |
| zeros(*sizes, out=None) -> Tensor |
| |
| Returns a tensor filled with the scalar value `0`, with the shape defined |
| by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a set of integers defining the shape of the output tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.zeros(2, 3) |
| |
| 0 0 0 |
| 0 0 0 |
| [torch.FloatTensor of size (2,3)] |
| |
| >>> torch.zeros(5) |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| [torch.FloatTensor of size (5,)] |
| |
| """) |
| |
| add_docstr(torch.zeros_like, |
| r""" |
| zeros_like(input, out=None) -> Tensor |
| |
| Returns a tensor filled with the scalar value `0`, with the same size as |
| :attr:`input`. |
| |
| Args: |
| input (Tensor): the size of the input will determine the size of the output. |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> input = torch.FloatTensor(2, 3) |
| >>> torch.zeros_like(input) |
| |
| 0 0 0 |
| 0 0 0 |
| [torch.FloatTensor of size (2,3)] |
| |
| """) |
| |
| add_docstr(torch.btrifact_with_info, |
| r""" |
| btrifact_with_info(A, pivot=True) -> (Tensor, IntTensor, IntTensor) |
| |
| Batch LU factorization with additional error information. |
| |
| This is a version of :meth:`torch.btrifact` that always creates an info |
| `IntTensor`, and returns it as the third return value. |
| |
| Arguments: |
| A (Tensor): the tensor to factor |
| pivot (bool, optional): controls whether pivoting is done |
| |
| Returns: |
| A tuple containing factorization, pivots, and an `IntTensor` where non-zero |
| values indicate whether factorization for each minibatch sample succeeds. |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> A_LU, pivots, info = A.btrifact_with_info() |
| >>> if info.nonzero().size(0) == 0: |
| >>> print('LU factorization succeeded for all samples!') |
| |
| LU factorization succeeded for all samples! |
| |
| """) |
| |
| add_docstr(torch.btrisolve, |
| r""" |
| btrisolve(b, LU_data, LU_pivots) -> Tensor |
| |
| Batch LU solve. |
| |
| Returns the LU solve of the linear system :math:`Ax = b`. |
| |
| Arguments: |
| b (Tensor): the RHS tensor |
| LU_data (Tensor): the pivoted LU factorization of A from :meth:`btrifact`. |
| LU_pivots (IntTensor): the pivots of the LU factorization |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> b = torch.randn(2, 3) |
| >>> A_LU = torch.btrifact(A) |
| >>> x = torch.btrisolve(b, *A_LU) |
| >>> torch.norm(torch.bmm(A, x.unsqueeze(2)) - b.unsqueeze(2)) |
| |
| 1.00000e-08 * |
| 7.1293 |
| [torch.FloatTensor of size ()] |
| |
| """) |
| |
| add_docstr(torch.empty_like, |
| r""" |
| empty_like(input) -> Tensor |
| |
| Returns an uninitialized tensor with the same size as :attr:`input`. |
| |
| Args: |
| input (Tensor): the size of :attr:`input` will determine size of the output tensor |
| |
| Example:: |
| |
| >>> input = torch.LongTensor(2,3) |
| >>> input.new(input.size()) |
| |
| 1.3996e+14 1.3996e+14 1.3996e+14 |
| 4.0000e+00 0.0000e+00 0.0000e+00 |
| [torch.LongTensor of size (2,3)] |
| |
| """) |
| |
| add_docstr(torch.stft, |
| r""" |
| stft(signal, frame_length, hop, fft_size=None, normalized=False, onesided=True, window=None, pad_end=0) -> Tensor |
| |
| Short-time Fourier transform (STFT). |
| |
| Ignoring the batch dimension, this method computes the following expression: |
| |
| .. math:: |
| X[m, \omega] = \sum_{k = 0}^{\text{frame_length}}% |
| window[k]\ signal[m \times hop + k]\ e^{- j \frac{2 \pi \cdot \omega k}{\text{frame_length}}}, |
| |
| where :math:`m` is the index of the sliding window, and :math:`\omega` is |
| the frequency that :math:`0 \leq \omega <` :attr:`fft_size`. When |
| :attr:`return_onsesided` is the default value ``True``, only values for |
| :math:`\omega` in range :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{fft_size}}{2} \right\rfloor + 1\right]` |
| are returned because the real-to-complex transform satisfies the Hermitian |
| symmetry, i.e., :math:`X[m, \omega] = X[m, \text{fft_size} - \omega]^*`. |
| |
| The input :attr:`signal` must be 1-D sequence :math:`(T)` or 2-D a batch of |
| sequences :math:`(N \times T)`. If :attr:`fft_size` is ``None``, it is |
| default to same value as :attr:`frame_length`. :attr:`window` can be a |
| 1-D tensor of size :attr:`frame_length`, e.g., see |
| :meth:`torch.hann_window`. If :attr:`window` is the default value ``None``, |
| it is treated as if having :math:`1` everywhere in the frame. |
| :attr:`pad_end` indicates the amount of zero padding at the end of |
| :attr:`signal` before STFT. If :attr:`normalized` is set to ``True``, the |
| function returns the normalized STFT results, i.e., multiplied by |
| :math:`(frame\_length)^{-0.5}`. |
| |
| Returns the real and the imaginary parts together as one tensor of size |
| :math:`(* \times N \times 2)`, where :math:`*` is the shape of input :attr:`signal`, |
| :math:`N` is the number of :math:`\omega` s considered depending on |
| :attr:`fft_size` and :attr:`return_onesided`, and each pair in the last |
| dimension represents a complex number as real part and imaginary part. |
| |
| Arguments: |
| signal (Tensor): the input tensor |
| frame_length (int): the size of window frame and STFT filter |
| hop (int): the distance between neighboring sliding window frames |
| fft_size (int, optional): size of Fourier transform. Default: ``None`` |
| normalized (bool, optional): controls whether to return the normalized STFT results |
| Default: ``False`` |
| onesided (bool, optional): controls whether to return half of results to |
| avoid redundancy Default: ``True`` |
| window (Tensor, optional): the optional window function. Default: ``None`` |
| pad_end (int, optional): implicit zero padding at the end of :attr:`signal`. Default: 0 |
| |
| Returns: |
| Tensor: A tensor containing the STFT result |
| """) |
| |
| add_docstr(torch.det, |
| r""" |
| det(A) -> Tensor |
| |
| Calculates determinant of a 2D square tensor. |
| |
| .. note:: |
| Backward through :meth:`det` internally uses SVD results when :attr:`A` is |
| not invertible. In this case, double backward through :meth:`det` will be |
| unstable in when :attr:`A` doesn't have distinct singular values. See |
| :meth:`~torch.svd` for details. |
| |
| Arguments: |
| A (Tensor): The input 2D square tensor |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.det(A) |
| |
| 0.3690 |
| [torch.FloatTensor of size ()] |
| |
| """) |
| |
| add_docstr(torch.where, |
| r""" |
| where(condition, x, y) -> Tensor |
| |
| Return a tensor of elements selected from either :attr:`x` or :attr:`y`, depending on :attr:`condition`. |
| |
| The operation is defined as: |
| |
| .. math:: |
| out_i = \begin{cases} |
| x_i & \text{if } condition_i \\ |
| y_i & \text{otherwise} \\ |
| \end{cases} |
| |
| .. note:: |
| The tensors :attr:`condition`, :attr:`x`, :attr:`y` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Arguments: |
| condition (ByteTensor): When True (nonzero), yield x, otherwise yield y |
| x (Tensor): values selected at indices where :attr:`condition` is ``True`` |
| y (Tensor): values selected at indices where :attr:`condition` is ``False`` |
| |
| Returns: |
| Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`x`, :attr:`y` |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 2) |
| >>> y = torch.ones(3, 2) |
| >>> x |
| |
| -2.2068 1.2589 |
| -0.9796 -0.7586 |
| -0.5561 0.5734 |
| [torch.FloatTensor of size (3,2)] |
| |
| >>> torch.where(x > 0, x, y) |
| |
| 1.0000 1.2589 |
| 1.0000 1.0000 |
| 1.0000 0.5734 |
| [torch.FloatTensor of size (3,2)] |
| |
| """) |
| |
| add_docstr(torch.logdet, |
| r""" |
| logdet(A) -> Tensor |
| |
| Calculates log determinant of a 2D square tensor. |
| |
| .. note:: |
| Result is ``-inf`` if :attr:`A` has zero log determinant, and is ``nan`` if |
| :attr:`A` has negative determinant. |
| |
| .. note:: |
| Backward through :meth:`logdet` internally uses SVD results when :attr:`A` |
| is not invertible. In this case, double backward through :meth:`logdet` will |
| be unstable in when :attr:`A` doesn't have distinct singular values. See |
| :meth:`~torch.svd` for details. |
| |
| Arguments: |
| A (Tensor): The input 2D square tensor |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.det(A) |
| |
| 1.9386 |
| [torch.FloatTensor of size ()] |
| |
| >>> torch.logdet(A) |
| |
| 0.6620 |
| [torch.FloatTensor of size ()] |
| |
| """) |
| |
| add_docstr(torch.slogdet, |
| r""" |
| slogdet(A) -> (Tensor, Tensor) |
| |
| Calculates the sign and log value of a 2D square tensor's determinant. |
| |
| .. note:: |
| If ``A`` has zero determinant, this returns ``(0, -inf)``. |
| |
| .. note:: |
| Backward through :meth:`slogdet` internally uses SVD results when :attr:`A` |
| is not invertible. In this case, double backward through :meth:`slogdet` |
| will be unstable in when :attr:`A` doesn't have distinct singular values. |
| See :meth:`~torch.svd` for details. |
| |
| Arguments: |
| A (Tensor): The input 2D square tensor |
| |
| Returns: |
| A tuple containing the sign of the determinant, and the log value of the |
| absolute determinant. |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.det(A) |
| |
| -0.3534 |
| [torch.FloatTensor of size ()] |
| |
| >>> torch.logdet(A) |
| |
| nan |
| [torch.FloatTensor of size ()] |
| |
| >>> torch.slogdet(A) |
| ( |
| -1 |
| [torch.FloatTensor of size ()] |
| , |
| -1.0402 |
| [torch.FloatTensor of size ()] |
| ) |
| |
| """) |
| |
| add_docstr(torch.fft, |
| r""" |
| fft(input, signal_ndim, normalized=False) -> Tensor |
| |
| Complex-to-complex Discrete Fourier Transform |
| |
| This method computes the complex-to-complex discrete Fourier transform. |
| Ignoring the batch dimension, it computes the following expression: |
| |
| .. math:: |
| X[\omega_1, \dots, \omega_d] = |
| \frac{1}{\prod_{i=1}^d N_i} \sum_{n_1=0}^{N_1} \dots \sum_{n_d=0}^{N_d} x[n_1, \dots, n_d] |
| e^{-j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, |
| |
| where :math:`d` = :attr:`signal_ndim` is number of dimensions for the |
| signal, and :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| This method supports 1D, 2D and 3D complex-to-complex transforms, indicated |
| by :attr:`signal_ndim`. :attr:`input` must be a tensor with last dimension |
| of size 2, representing the real and imaginary components of complex |
| numbers, and should have ``signal_ndim + 1`` dimensions or ``signal_ndim + 2`` |
| dimensions with batched data. If :attr:`normalized` is set to ``True``, this |
| normalizes the result by dividing it with :math:`\sqrt{\prod_{i=1}^K N_i}` so |
| that the operator is unitary. |
| |
| Returns the real and the imaginary parts together as one tensor of the same |
| shape of :attr:`input`. |
| |
| The inverse of this function is :func:`~torch.ifft`. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Check |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| |
| Returns: |
| Tensor: A tensor containing the complex-to-complex Fourier transform result |
| |
| Example:: |
| |
| >>> # unbatched 2D FFT |
| >>> x = torch.randn(4, 3, 2) |
| >>> torch.fft(x, 2) |
| |
| (0 ,.,.) = |
| 6.8901 -1.7571 |
| 0.4166 -1.1500 |
| 3.9736 0.5400 |
| |
| (1 ,.,.) = |
| -0.3050 0.4976 |
| 0.2072 1.1015 |
| 1.3850 -0.0566 |
| |
| (2 ,.,.) = |
| 3.1463 3.3727 |
| 1.4051 -3.3523 |
| 1.5072 -4.1700 |
| |
| (3 ,.,.) = |
| 5.1215 -2.5402 |
| 5.1859 1.4077 |
| 2.0077 1.3137 |
| [torch.FloatTensor of size (4,3,2)] |
| |
| >>> # batched 1D FFT |
| >>> torch.fft(x, 1) |
| |
| (0 ,.,.) = |
| 3.7132 -0.1067 |
| 1.8037 -0.4983 |
| 2.2184 -0.5932 |
| |
| (1 ,.,.) = |
| 0.1765 -2.6391 |
| -0.1705 -0.6941 |
| 0.9592 1.0218 |
| |
| (2 ,.,.) = |
| 1.3050 0.9145 |
| -0.8929 -1.7529 |
| 0.5220 -1.2218 |
| |
| (3 ,.,.) = |
| 1.6954 0.0742 |
| -0.3237 1.7953 |
| 0.2740 1.3332 |
| [torch.FloatTensor of size (4,3,2)] |
| |
| """) |
| |
| add_docstr(torch.ifft, |
| r""" |
| ifft(input, signal_ndim, normalized=False) -> Tensor |
| |
| Complex-to-complex Inverse Discrete Fourier Transform |
| |
| This method computes the complex-to-complex inverse discrete Fourier |
| transform. Ignoring the batch dimension, it computes the following |
| expression: |
| |
| .. math:: |
| X[\omega_1, \dots, \omega_d] = |
| \frac{1}{\prod_{i=1}^d N_i} \sum_{n_1=0}^{N_1} \dots \sum_{n_d=0}^{N_d} x[n_1, \dots, n_d] |
| e^{\ j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, |
| |
| where :math:`d` = :attr:`signal_ndim` is number of dimensions for the |
| signal, and :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| The argument specifications are almost identical with :func:`~torch.fft`. |
| However, if :attr:`normalized` is set to ``True``, this instead returns the |
| results multiplied by :math:`\sqrt{\prod_{i=1}^d N_i}`, to become a unitary |
| operator. Therefore, to invert a :func:`~torch.fft`, the :attr:`normalized` |
| argument should be set identically for :func:`~torch.fft`. |
| |
| Returns the real and the imaginary parts together as one tensor of the same |
| shape of :attr:`input`. |
| |
| The inverse of this function is :func:`~torch.fft`. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Check |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| |
| Returns: |
| Tensor: A tensor containing the complex-to-complex inverse Fourier transform result |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 3, 2) |
| >>> x |
| |
| (0 ,.,.) = |
| 1.2735 -0.9441 |
| -1.0940 0.2728 |
| 0.8997 0.4231 |
| |
| (1 ,.,.) = |
| -0.5239 -1.4942 |
| 0.5248 3.3432 |
| 1.0976 -2.0426 |
| |
| (2 ,.,.) = |
| 1.1039 1.9541 |
| -0.2774 0.2631 |
| 0.3102 0.8129 |
| [torch.FloatTensor of size (3,3,2)] |
| |
| >>> y = torch.fft(x, 2) |
| >>> torch.ifft(y, 2) # recover x |
| |
| (0 ,.,.) = |
| 1.2735 -0.9441 |
| -1.0940 0.2728 |
| 0.8997 0.4231 |
| |
| (1 ,.,.) = |
| -0.5239 -1.4942 |
| 0.5248 3.3432 |
| 1.0976 -2.0426 |
| |
| (2 ,.,.) = |
| 1.1039 1.9541 |
| -0.2774 0.2631 |
| 0.3102 0.8129 |
| [torch.FloatTensor of size (3,3,2)] |
| |
| """) |
| |
| add_docstr(torch.rfft, |
| r""" |
| rfft(input, signal_ndim, normalized=False, onesided=True) -> Tensor |
| |
| Real-to-complex Discrete Fourier Transform |
| |
| This method computes the real-to-complex discrete Fourier transform. It is |
| mathematically equivalent with :func:`~torch.fft` with differences only in |
| formats of the input and output. |
| |
| This method supports 1D, 2D and 3D real-to-complex transforms, indicated |
| by :attr:`signal_ndim`. :attr:`input` must be a tensor with ``signal_ndim`` |
| dimensions or ``signal_ndim + 1`` dimensions with batched data. If |
| :attr:`normalized` is set to ``True``, this normalizes the result by multiplying |
| it with :math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary, where |
| :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| The real-to-complex Fourier transform results follow conjugate symmetry: |
| |
| .. math:: |
| X[\omega_1, \dots, \omega_d] = X^*[N_1 - \omega_1, \dots, N_d - \omega_d], |
| |
| where the index arithmetic is computed modulus the size of the corresponding |
| dimension, :math:`\ ^*` is the conjugate operator, and |
| :math:`d` = :attr:`signal_ndim`. :attr:`onesided` flag controls whether to avoid |
| redundancy in the output results. If set to ``True`` (default), the output will |
| not be full complex result of shape :math:`(*, 2)`, where :math:`*` is the shape |
| of :attr:`input`, but instead the last dimension will be halfed as of size |
| :math:`\lfloor \frac{N_d}{2} \rfloor + 1`. |
| |
| The inverse of this function is :func:`~torch.irfft`. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Check |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| onesided (bool, optional): controls whether to return half of results to |
| avoid redundancy Default: ``True`` |
| |
| Returns: |
| Tensor: A tensor containing the real-to-complex Fourier transform result |
| |
| Example:: |
| |
| >>> x = torch.randn(5, 5) |
| >>> torch.rfft(x, 2).shape |
| torch.Size([5, 3, 2]) |
| >>> torch.rfft(x, 2, onesided=False).shape |
| torch.Size([5, 5, 2]) |
| |
| """) |
| |
| |
| add_docstr(torch.irfft, |
| r""" |
| irfft(input, signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor |
| |
| Complex-to-real Inverse Discrete Fourier Transform |
| |
| This method computes the complex-to-real inverse discrete Fourier transform. |
| It is mathematically equivalent with :func:`ifft` with differences only in |
| formats of the input and output. |
| |
| The argument specifications are almost identical with :func:`~torch.ifft`. |
| Similar to :func:`~torch.ifft`, if :attr:`normalized` is set to ``True``, |
| this normalizes the result by multiplying it with |
| :math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary, where |
| :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| Due to the conjugate symmetry, :attr:`input` do not need to contain the full |
| complex frequency values. Roughly half of the values will be sufficient, as |
| is the case when :attr:`input` is given by :func:`~torch.rfft` with |
| ``rfft(signal, onesided=True)``. In such case, set the :attr:`onesided` |
| argument of this method to ``True``. Moreover, the original signal shape |
| information can sometimes be lost, optionally set :attr:`signal_sizes` to be |
| the size of the original signal (without batch dimension if in batched mode) to |
| recover it with correct shape. |
| |
| Therefore, to invert an :func:`~torch.rfft`, the :attr:`normalized` and |
| :attr:`onesided` arguments should be set identically for :func:`~torch.irfft`, |
| and preferrably a :attr:`signal_sizes` is given to avoid size mismatch. See the |
| example below for a case of size mismatch. |
| |
| See :func:`~torch.rfft` for details on conjugate symmetry. |
| |
| The inverse of this function is :func:`~torch.rfft`. |
| |
| .. warning:: |
| Generally speaking, the input of this function should contain values |
| following conjugate symmetry. Note that even if :attr:`onesided` is |
| ``True``, often symmetry on some part is still needed. When this |
| requirement is not satisfied, the behavior of :func:`~torch.irfft` is |
| undefined. Since :func:`torch.autograd.gradcheck` estimates numerical |
| Jacobian with point perturbations, :func:`~torch.irfft` will almost |
| certainly fail the check. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Check |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| onesided (bool, optional): controls whether :attr:`input` was halfed to avoid |
| redundancy, e.g., by :func:`rfft`. Default: ``True`` |
| signal_sizes (list or :class:`torch.Size`, optional): the size of the original |
| signal (without batch dimension). Default: ``None`` |
| |
| Returns: |
| Tensor: A tensor containing the complex-to-real inverse Fourier transform result |
| |
| Example:: |
| |
| >>> x = torch.randn(4, 4) |
| >>> torch.rfft(x, 2, onesided=True).shape |
| torch.Size([4, 3, 2]) |
| >>> |
| >>> # notice that with onesided=True, output size does not determine the original signal size |
| >>> x = torch.randn(4, 5) |
| >>> torch.rfft(x, 2, onesided=True).shape |
| torch.Size([4, 3, 2]) |
| >>> |
| >>> x |
| |
| -0.5052 -0.0420 0.5773 -0.2224 1.8413 |
| -0.0873 -0.7571 -0.1982 0.5722 -1.8076 |
| -1.5447 0.4344 0.8692 1.7930 2.6886 |
| 0.4674 0.0517 -0.7564 -0.5118 -0.7023 |
| [torch.FloatTensor of size (4,5)] |
| |
| >>> y = torch.rfft(x, 2, onesided=True) |
| >>> torch.irfft(y, 2, onesided=True, signal_sizes=x.shape) # recover x |
| |
| -0.5052 -0.0420 0.5773 -0.2224 1.8413 |
| -0.0873 -0.7571 -0.1982 0.5722 -1.8076 |
| -1.5447 0.4344 0.8692 1.7930 2.6886 |
| 0.4674 0.0517 -0.7564 -0.5118 -0.7023 |
| [torch.FloatTensor of size (4,5)] |
| |
| """) |