blob: 1aa2bc4791f5c84ce820766b74d0baef3e6825a4 [file] [log] [blame]
#include "caffe2/operators/math_ops.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
struct LogCPUFunctor {
template <typename T>
inline void
operator()(const int n, const T* x, T* y, CPUContext* device_context) {
math::Log<T, CPUContext>(n, x, y, device_context);
}
};
REGISTER_CPU_OPERATOR(
Log,
UnaryElementwiseOp<TensorTypes<float>, CPUContext, LogCPUFunctor>);
OPERATOR_SCHEMA(Log)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Calculates the natural log of the given input tensor, element-wise. This
operation can be done in an in-place fashion too, by providing the same input
and output blobs.
)DOC")
.Input(0, "input", "Input tensor")
.Output(
0,
"output",
"The natural log of the input tensor computed "
"element-wise")
.InheritOnnxSchema("Log");
class GetLogGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"Div",
"",
std::vector<string>{GO(0), I(0)},
std::vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Log, GetLogGradient);
} // namespace caffe2