blob: f70d7d421505df36ddbf3d3d3126d4f532982e0f [file] [log] [blame]
from typing import Any, Optional
from .module import Module
from ... import Tensor
# The deprecated `size_average` and `reduce` arguments are not included in the stubs
class _Loss(Module):
reduction: str = ...
def __init__(self, reduction: str = ...) -> None: ...
class _WeightedLoss(_Loss):
def __init__(self, weight: Optional[Any] = ..., reduction: str = ...) -> None: ...
class L1Loss(_Loss):
def __init__(self, reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class NLLLoss(_WeightedLoss):
ignore_index: int = ...
def __init__(self, weight: Optional[Any] = ..., ignore_index: int = ..., reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class NLLLoss2d(NLLLoss):
def __init__(self, weight: Optional[Any] = ..., ignore_index: int = ..., reduction: str = ...) -> None: ...
class PoissonNLLLoss(_Loss):
log_input: bool = ...
full: bool = ...
eps: float = ...
def __init__(self, log_input: bool = ..., full: bool = ..., eps: float = ..., reduction: str = ...) -> None: ...
def forward(self, log_input: Tensor, target: Tensor) -> Tensor: ...
class KLDivLoss(_Loss):
def __init__(self, reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class MSELoss(_Loss):
def __init__(self, reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class BCELoss(_WeightedLoss):
def __init__(self, weight: Optional[Any] = ..., reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class BCEWithLogitsLoss(_Loss):
def __init__(self, weight: Optional[Any] = ..., reduction: str = ..., pos_weight: Optional[Any] = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class HingeEmbeddingLoss(_Loss):
margin: Any = ...
def __init__(self, margin: float = ..., reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class MultiLabelMarginLoss(_Loss):
def __init__(self, reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class SmoothL1Loss(_Loss):
def __init__(self, reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class SoftMarginLoss(_Loss):
def __init__(self, reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class CrossEntropyLoss(_WeightedLoss):
ignore_index: int = ...
def __init__(self, weight: Optional[Any] = ..., ignore_index: int = ..., reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class MultiLabelSoftMarginLoss(_WeightedLoss):
def __init__(self, weight: Optional[Any] = ..., reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class CosineEmbeddingLoss(_Loss):
margin: float = ...
def __init__(self, margin: float = ..., reduction: str = ...) -> None: ...
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor: ...
class MarginRankingLoss(_Loss):
margin: float = ...
def __init__(self, margin: float = ..., reduction: str = ...) -> None: ...
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor: ...
class MultiMarginLoss(_WeightedLoss):
p: int = ...
margin: float = ...
def __init__(self, p: int = ..., margin: float = ..., weight: Optional[Any] = ...,
reduction: str = ...) -> None: ...
def forward(self, input: Tensor, target: Tensor) -> Tensor: ...
class TripletMarginLoss(_Loss):
margin: float = ...
p: int = ...
eps: float = ...
swap: bool = ...
def __init__(self, margin: float = ..., p: int = ..., eps: float = ..., swap: bool = ...,
reduction: str = ...) -> None: ...
def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor: ...
class CTCLoss(_Loss):
blank: int = ...
zero_infinity: bool = ...
def __init__(self, blank: int = ..., reduction: str = ..., zero_infinity: bool = ...) -> None: ...
def forward(self, log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor) -> Tensor: ...