| #include <c10d/ProcessGroupGloo.hpp> |
| |
| #include <c10d/GlooDeviceFactory.hpp> |
| |
| #include <netdb.h> |
| #include <sys/socket.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <type_traits> |
| |
| #include <gloo/allgather.h> |
| #include <gloo/allgatherv.h> |
| #include <gloo/allreduce.h> |
| #include <gloo/barrier.h> |
| #include <gloo/broadcast.h> |
| #include <gloo/gather.h> |
| #include <gloo/reduce.h> |
| #include <gloo/scatter.h> |
| |
| #include <ATen/SparseTensorUtils.h> |
| |
| #ifdef USE_CUDA |
| #include <ATen/cuda/CUDAEvent.h> |
| #include <ATen/cuda/Exceptions.h> |
| #include <ATen/cuda/PinnedMemoryAllocator.h> |
| #include <c10/cuda/CUDACachingAllocator.h> |
| #include <c10/cuda/CUDAGuard.h> |
| #include <c10/cuda/CUDAStream.h> |
| #endif |
| |
| #include <c10/util/StringUtil.h> |
| #include <gloo/config.h> |
| #include <gloo/rendezvous/context.h> |
| #include <gloo/rendezvous/prefix_store.h> |
| |
| #define GENERATE_ALL_TYPES(type, func, args...) \ |
| switch (type) { \ |
| case ::at::ScalarType::Float: \ |
| func<float>(args); \ |
| break; \ |
| case ::at::ScalarType::Double: \ |
| func<double>(args); \ |
| break; \ |
| case ::at::ScalarType::Half: \ |
| func<gloo::float16>(args); \ |
| break; \ |
| case ::at::ScalarType::Char: \ |
| func<int8_t>(args); \ |
| break; \ |
| case ::at::ScalarType::Byte: \ |
| func<uint8_t>(args); \ |
| break; \ |
| case ::at::ScalarType::Int: \ |
| func<int32_t>(args); \ |
| break; \ |
| case ::at::ScalarType::Long: \ |
| func<int64_t>(args); \ |
| break; \ |
| default: \ |
| throw std::runtime_error("Invalid scalar type"); \ |
| } |
| |
| namespace c10d { |
| |
| namespace { |
| |
| // Wrap c10d store as Gloo store |
| class GlooStore : public ::gloo::rendezvous::Store { |
| public: |
| GlooStore(const std::shared_ptr<::c10d::Store>& store) : store_(store) {} |
| |
| void set(const std::string& key, const std::vector<char>& value) override { |
| std::vector<uint8_t> tmp(value.begin(), value.end()); |
| store_->set(key, tmp); |
| } |
| |
| std::vector<char> get(const std::string& key) override { |
| auto value = store_->get(key); |
| return std::vector<char>(value.begin(), value.end()); |
| } |
| |
| void wait(const std::vector<std::string>& keys) override { |
| store_->wait(keys, Store::kDefaultTimeout); |
| } |
| |
| void wait( |
| const std::vector<std::string>& keys, |
| const std::chrono::milliseconds& timeout) override { |
| store_->wait(keys, timeout); |
| } |
| |
| protected: |
| std::shared_ptr<::c10d::Store> store_; |
| }; |
| |
| typedef void (*ReduceFunc)(void*, const void*, const void*, size_t); |
| |
| template < |
| typename T, |
| typename std::enable_if<!std::is_integral<T>::value, int>::type = 0> |
| ReduceFunc toFunction(const ReduceOp& r) { |
| switch (r) { |
| case ReduceOp::SUM: |
| return ReduceFunc(&::gloo::sum<T>); |
| case ReduceOp::PRODUCT: |
| return ReduceFunc(&::gloo::product<T>); |
| case ReduceOp::MIN: |
| return ReduceFunc(&::gloo::min<T>); |
| case ReduceOp::MAX: |
| return ReduceFunc(&::gloo::max<T>); |
| case ReduceOp::BAND: |
| throw std::runtime_error( |
| "Cannot use ReduceOp.BAND with non-integral dtype"); |
| break; |
| case ReduceOp::BOR: |
| throw std::runtime_error( |
| "Cannot use ReduceOp.BOR with non-integral dtype"); |
| break; |
| case ReduceOp::BXOR: |
| throw std::runtime_error( |
| "Cannot use ReduceOp.BXOR with non-integral dtype"); |
| break; |
| case ReduceOp::UNUSED: |
| break; |
| } |
| |
| throw std::runtime_error("Unhandled ReduceOp"); |
| } |
| |
| // Bitwise AND with SFINAE guard for integral types. |
| template < |
| typename T, |
| typename std::enable_if<std::is_integral<T>::value, int>::type = 0> |
| void band(void* c, const void* a, const void* b, size_t n) { |
| auto tc = static_cast<T*>(c); |
| auto ta = static_cast<const T*>(a); |
| auto tb = static_cast<const T*>(b); |
| for (size_t i = 0; i < n; i++) { |
| tc[i] = ta[i] & tb[i]; |
| } |
| } |
| |
| // Bitwise OR with SFINAE guard for integral types. |
| template < |
| typename T, |
| typename std::enable_if<std::is_integral<T>::value, int>::type = 0> |
| void bor(void* c, const void* a, const void* b, size_t n) { |
| auto tc = static_cast<T*>(c); |
| auto ta = static_cast<const T*>(a); |
| auto tb = static_cast<const T*>(b); |
| for (size_t i = 0; i < n; i++) { |
| tc[i] = ta[i] | tb[i]; |
| } |
| } |
| |
| // Bitwise XOR with SFINAE guard for integral types. |
| template < |
| typename T, |
| typename std::enable_if<std::is_integral<T>::value, int>::type = 0> |
| void bxor(void* c, const void* a, const void* b, size_t n) { |
| auto tc = static_cast<T*>(c); |
| auto ta = static_cast<const T*>(a); |
| auto tb = static_cast<const T*>(b); |
| for (size_t i = 0; i < n; i++) { |
| tc[i] = ta[i] ^ tb[i]; |
| } |
| } |
| |
| template < |
| typename T, |
| typename std::enable_if<std::is_integral<T>::value, int>::type = 0> |
| ReduceFunc toFunction(const ReduceOp& r) { |
| switch (r) { |
| case ReduceOp::SUM: |
| return ReduceFunc(&::gloo::sum<T>); |
| case ReduceOp::PRODUCT: |
| return ReduceFunc(&::gloo::product<T>); |
| case ReduceOp::MIN: |
| return ReduceFunc(&::gloo::min<T>); |
| case ReduceOp::MAX: |
| return ReduceFunc(&::gloo::max<T>); |
| case ReduceOp::BAND: |
| return ReduceFunc(&band<T>); |
| case ReduceOp::BOR: |
| return ReduceFunc(&bor<T>); |
| case ReduceOp::BXOR: |
| return ReduceFunc(&bxor<T>); |
| case ReduceOp::UNUSED: |
| break; |
| } |
| |
| throw std::runtime_error("Unhandled ReduceOp"); |
| } |
| |
| template <typename T, typename O> |
| void setInputs(O& opts, std::vector<at::Tensor>& tensors) { |
| opts.setInputs(getDataPointers<T>(tensors), tensors[0].numel()); |
| } |
| |
| template <typename T, typename O> |
| void setInput(O& opts, at::Tensor& tensor) { |
| opts.setInput(getDataPointer<T>(tensor), tensor.numel()); |
| } |
| |
| template <typename T, typename O> |
| void setOutputs(O& opts, std::vector<at::Tensor>& tensors) { |
| opts.setOutputs(getDataPointers<T>(tensors), tensors[0].numel()); |
| } |
| |
| template <typename T, typename O> |
| void setOutput(O& opts, at::Tensor& tensor) { |
| opts.setOutput(getDataPointer<T>(tensor), tensor.numel()); |
| } |
| |
| template <typename T, typename O> |
| void setOutput(O& opts, at::Tensor& tensor, std::vector<size_t>& counts) { |
| opts.setOutput(getDataPointer<T>(tensor), counts); |
| } |
| |
| #ifdef USE_CUDA |
| |
| at::Tensor pinnedLike(at::Tensor& tensor) { |
| auto* allocator = at::cuda::getPinnedMemoryAllocator(); |
| auto storage = c10::Storage( |
| c10::Storage::use_byte_size_t(), |
| at::detail::computeStorageNbytes( |
| tensor.sizes(), tensor.strides(), tensor.dtype().itemsize()), |
| allocator, |
| /*resizable=*/false); |
| return at::empty({0}, tensor.options().device(at::kCPU)) |
| .set_(storage, 0, tensor.sizes(), tensor.strides()); |
| } |
| |
| // This function initializes a vector of CUDA streams, one for every |
| // tensor in the input tensor vector, and ensures that these streams are |
| // synchronized with the current default streams. This is needed so |
| // that new work on the new streams is serialized w.r.t. all operations |
| // on the tensors. |
| void initializeStreamsEvents( |
| std::vector<at::Tensor>& tensors, |
| std::vector<at::cuda::CUDAStream>& streams, |
| std::vector<at::cuda::CUDAEvent>& events) { |
| at::cuda::OptionalCUDAGuard guard; |
| streams.reserve(tensors.size()); |
| events.resize(tensors.size()); |
| for (size_t i = 0; i < tensors.size(); i++) { |
| guard.set_index(tensors[i].device().index()); |
| // Record event on current stream |
| events[i].record(at::cuda::getCurrentCUDAStream()); |
| // Get a non-default stream to execute asynchronous CUDA operations |
| // on for this device. This ensures that the default stream used |
| // by the caller is not occupied by c10d related operations. |
| streams.push_back(at::cuda::getStreamFromPool( |
| /* isHighPriority */ true, tensors[i].device().index())); |
| // Ensure the new stream is synchronized with the current stream. |
| events[i].block(streams[i]); |
| |
| // `tensors` are created on a different stream. Hence, they must record |
| // new streams in this Work to prevent being freed before the Work finishes. |
| if (tensors[i].is_sparse()) { |
| if (tensors[i].is_coalesced()) { |
| c10::cuda::CUDACachingAllocator::recordStream( |
| tensors[i].indices().storage().data_ptr(), streams[i]); |
| c10::cuda::CUDACachingAllocator::recordStream( |
| tensors[i].values().storage().data_ptr(), streams[i]); |
| } else { |
| // We will need to coalesce first, which means new tensors will |
| // be allocated on the streams we just allocated, and there |
| // is no need to record them separately. |
| } |
| } else { |
| c10::cuda::CUDACachingAllocator::recordStream( |
| tensors[i].storage().data_ptr(), streams[i]); |
| } |
| } |
| } |
| |
| // This function initializes a vector of CUDA streams, one per device, |
| // and ensures that these streams are synchronized with the current default |
| // streams. It is assumed that the tensors in the nested tensor vectors are |
| // on the same device. |
| void initializeStreamsEvents( |
| std::vector<std::vector<at::Tensor>>& tensors, |
| std::vector<at::cuda::CUDAStream>& streams, |
| std::vector<at::cuda::CUDAEvent>& events) { |
| // Ensure that the tensors in the nested tensor vectors are on the same |
| // device. |
| for (size_t i = 0; i < tensors.size(); i++) { |
| auto device_id = tensors[i][0].device().index(); |
| for (size_t j = 1; j < tensors[i].size(); j++) { |
| if (tensors[i][j].device().index() != device_id) { |
| throw std::runtime_error( |
| "tensors in the nested tensor vectors need to " |
| "be on the same device"); |
| } |
| } |
| } |
| |
| at::cuda::OptionalCUDAGuard guard; |
| streams.reserve(tensors.size()); |
| events.resize(tensors.size()); |
| for (size_t i = 0; i < tensors.size(); i++) { |
| guard.set_index(tensors[i][0].device().index()); |
| // Record event on current stream |
| events[i].record(at::cuda::getCurrentCUDAStream()); |
| // Get a non-default stream to execute asynchronous CUDA operations |
| // on for this output. This ensures that the default stream used |
| // by the caller is not occupied by c10d related operations. |
| streams.push_back(at::cuda::getStreamFromPool( |
| /* isHighPriority */ true, tensors[i][0].device().index())); |
| // Ensure the new stream is synchronized with the current stream. |
| events[i].block(streams[i]); |
| |
| for (at::Tensor& tensor : tensors[i]) { |
| // `tensors` are created on a different stream. Hence, they must record |
| // new streams in this Work to prevent being freed before the Work |
| // finishes. |
| c10::cuda::CUDACachingAllocator::recordStream( |
| tensor.storage().data_ptr(), streams[i]); |
| } |
| } |
| } |
| |
| #endif |
| |
| const auto kLoopbackAddress = "127.0.0.1"; |
| |
| } // namespace |
| |
| ProcessGroupGloo::SendWork::SendWork( |
| at::Tensor& tensor, |
| std::unique_ptr<::gloo::transport::UnboundBuffer> buffer) |
| : tensor_(tensor), buffer_(std::move(buffer)) {} |
| |
| bool ProcessGroupGloo::SendWork::wait() { |
| bool sendCompleted = false; |
| std::exception_ptr exception{nullptr}; |
| try { |
| sendCompleted = buffer_->waitSend(); |
| } catch (...) { |
| exception = std::current_exception(); |
| } |
| |
| // Completes the Work object and throws the exception. |
| finishAndThrow(exception); |
| return sendCompleted; |
| } |
| |
| void ProcessGroupGloo::SendWork::abort() { |
| buffer_->abortWaitSend(); |
| } |
| |
| ProcessGroupGloo::RecvWork::RecvWork( |
| at::Tensor& tensor, |
| std::unique_ptr<::gloo::transport::UnboundBuffer> buffer) |
| : tensor_(tensor), buffer_(std::move(buffer)), srcRank_(-1) {} |
| |
| int ProcessGroupGloo::RecvWork::sourceRank() const { |
| std::lock_guard<std::mutex> lock(mutex_); |
| return srcRank_; |
| } |
| |
| bool ProcessGroupGloo::RecvWork::wait() { |
| bool recvCompleted = false; |
| std::exception_ptr exception{nullptr}; |
| try { |
| recvCompleted = buffer_->waitRecv(&srcRank_); |
| } catch (...) { |
| exception = std::current_exception(); |
| } |
| |
| // Completes the Work object and throws the exception. |
| finishAndThrow(exception); |
| return recvCompleted; |
| } |
| |
| void ProcessGroupGloo::RecvWork::abort() { |
| buffer_->abortWaitRecv(); |
| } |
| |
| ProcessGroupGloo::Options::Options() |
| : timeout(std::chrono::milliseconds(10 * 1000)), threads(2) {} |
| |
| namespace { |
| |
| // Gloo assumes that this machine's hostname can always be resolved |
| // to an address. If it doesn't it throws a runtime error saying |
| // that it can't be resolved. Instead of catching it, we choose |
| // to proactively check if an address can be resolved, so we can |
| // gracefully fall back to an alternative if it doesn't. |
| bool doesHostnameResolveToUsableAddress(const std::string& hostname) { |
| struct addrinfo hints; |
| memset(&hints, 0, sizeof(hints)); |
| hints.ai_family = AF_UNSPEC; |
| hints.ai_socktype = SOCK_STREAM; |
| struct addrinfo* result; |
| auto rv = getaddrinfo(hostname.c_str(), nullptr, &hints, &result); |
| if (rv < 0) { |
| return false; |
| } |
| struct addrinfo* rp; |
| for (rp = result; rp != nullptr; rp = rp->ai_next) { |
| auto fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); |
| if (fd == -1) { |
| continue; |
| } |
| rv = bind(fd, rp->ai_addr, rp->ai_addrlen); |
| close(fd); |
| if (rv == -1) { |
| continue; |
| } |
| break; |
| } |
| freeaddrinfo(result); |
| return rp != nullptr; |
| } |
| |
| } // namespace |
| |
| #if defined(__linux__) || defined(__APPLE__) |
| std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo:: |
| createDeviceForInterface(const std::string& interface) { |
| return ::c10d::GlooDeviceFactory::makeDeviceForInterface(interface); |
| } |
| #endif |
| |
| #if defined(__linux__) || defined(__APPLE__) |
| std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo:: |
| createDeviceForHostname(const std::string& hostname) { |
| TORCH_CHECK( |
| doesHostnameResolveToUsableAddress(hostname), |
| "Cannot resolve ", |
| hostname, |
| " to a (local) address"); |
| return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname); |
| } |
| #endif |
| |
| #ifdef __linux__ |
| std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo:: |
| createDefaultDevice() { |
| // Use the hostname to resolve the network address to |
| // use. Note: if the hostname does not resolve to an address (e.g. |
| // because of misconfigured /etc/hosts file), this will not work. |
| std::array<char, HOST_NAME_MAX> hostname{}; |
| auto rv = gethostname(hostname.data(), HOST_NAME_MAX); |
| if (rv != 0) { |
| throw std::system_error(errno, std::system_category()); |
| } |
| |
| // Use this machine's hostname if it resolves to an address. |
| if (doesHostnameResolveToUsableAddress(hostname.data())) { |
| return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname.data()); |
| } |
| |
| // Otherwise, use the loopback address. |
| TORCH_WARN_ONCE( |
| "Unable to resolve hostname to a (local) address. ", |
| "Using the loopback address as fallback. ", |
| "Manually set the network interface to bind to with GLOO_SOCKET_IFNAME."); |
| return createDeviceForHostname(kLoopbackAddress); |
| } |
| #endif |
| |
| #ifdef __APPLE__ |
| std::shared_ptr<::gloo::transport::Device> ProcessGroupGloo:: |
| createDefaultDevice() { |
| // Use the hostname to resolve the network address to |
| // use. Note: if the hostname does not resolve to an address (e.g. |
| // because of misconfigured /etc/hosts file), this will not work. |
| const auto hostNameMax = sysconf(_SC_HOST_NAME_MAX); |
| auto hostname = std::unique_ptr<char[]>(new char[hostNameMax]); |
| auto rv = gethostname(hostname.get(), hostNameMax); |
| if (rv != 0) { |
| throw std::system_error(errno, std::system_category()); |
| } |
| |
| // Use this machine's hostname if it resolves to an address. |
| if (doesHostnameResolveToUsableAddress(hostname.get())) { |
| return ::c10d::GlooDeviceFactory::makeDeviceForHostname(hostname.get()); |
| } |
| |
| // Otherwise, use the loopback address. |
| TORCH_WARN_ONCE( |
| "Unable to resolve hostname to a (local) address. ", |
| "Using the loopback address as fallback. ", |
| "Manually set the network interface to bind to with GLOO_SOCKET_IFNAME."); |
| return createDeviceForHostname(kLoopbackAddress); |
| } |
| #endif |
| |
| ProcessGroupGloo::ProcessGroupGloo( |
| const std::shared_ptr<Store>& store, |
| int rank, |
| int size, |
| Options options) |
| : ProcessGroup(rank, size), |
| store_(new GlooStore(store)), |
| stop_(false), |
| collectiveCounter_(0) { |
| auto& devices = options.devices; |
| if (devices.empty()) { |
| throw std::runtime_error("No device(s) specified"); |
| } |
| |
| // Create and connect a context for every device. |
| // |
| // Note that the same device can be specified multiple times, either |
| // the same object, or the same logical device as different objects. |
| // Either mode is fine and only has performance implications. |
| // |
| // Using the same object multiple times means all contexts share a |
| // single I/O thread. If you use different objects for the same |
| // logical device they will have independent I/O threads. The latter |
| // option is needed if you have a fast NIC that cannot be saturated |
| // by a single I/O thread. |
| // |
| contexts_.reserve(options.devices.size()); |
| for (size_t i = 0; i < options.devices.size(); i++) { |
| auto context = std::make_shared<::gloo::rendezvous::Context>(rank_, size_); |
| auto store = ::gloo::rendezvous::PrefixStore(std::to_string(i), *store_); |
| context->setTimeout(options.timeout); |
| context->connectFullMesh(store, options.devices[i]); |
| contexts_.push_back(std::move(context)); |
| } |
| |
| // Every worker thread stores the AsyncWork object it's currently |
| // working on in the workInProgress_ vector. It must have size equal |
| // to the number of workers such that they can simply index into it |
| // using the worker index they are started with. |
| workInProgress_.resize(options.threads); |
| |
| threads_.resize(options.threads); |
| for (size_t i = 0; i < threads_.size(); i++) { |
| threads_[i] = std::thread(&ProcessGroupGloo::runLoop, this, i); |
| } |
| } |
| |
| ProcessGroupGloo::~ProcessGroupGloo() { |
| std::unique_lock<std::mutex> lock(workMutex_); |
| workConsumeCV_.wait(lock, [&] { return workQueue_.empty(); }); |
| |
| // Queue is empty, signal stop |
| stop_ = true; |
| |
| // Release lock to allow threads to terminate |
| lock.unlock(); |
| |
| workProduceCV_.notify_all(); |
| |
| // Wait for worker threads to terminate |
| for (auto& thread : threads_) { |
| thread.join(); |
| } |
| } |
| |
| uint32_t ProcessGroupGloo::nextTag() { |
| return collectiveCounter_++; |
| } |
| |
| std::shared_ptr<::gloo::Context> ProcessGroupGloo::getContext(uint32_t tag) { |
| return contexts_[tag % contexts_.size()]; |
| } |
| |
| void ProcessGroupGloo::runLoop(int workerIndex) { |
| std::unique_lock<std::mutex> lock(workMutex_); |
| |
| while (!stop_) { |
| if (workQueue_.empty()) { |
| workProduceCV_.wait(lock); |
| continue; |
| } |
| |
| auto work = std::move(workQueue_.front()); |
| workQueue_.pop_front(); |
| workInProgress_[workerIndex] = work; |
| lock.unlock(); |
| |
| // Notify after releasing the lock so that the waiter |
| // does not immediately block. |
| workConsumeCV_.notify_one(); |
| |
| AsyncWork::execute(std::move(work)); |
| lock.lock(); |
| workInProgress_[workerIndex] = nullptr; |
| } |
| } |
| |
| void ProcessGroupGloo::enqueue(std::shared_ptr<AsyncWork> work) { |
| std::unique_lock<std::mutex> lock(workMutex_); |
| workQueue_.push_back(std::move(work)); |
| lock.unlock(); |
| |
| // Notify after releasing the lock so that the waiter |
| // does not immediately block. |
| workProduceCV_.notify_one(); |
| } |
| |
| namespace { |
| |
| class AsyncBroadcastWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncBroadcastWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| int rootRank, |
| int rootTensor, |
| uint32_t tag) |
| : context(context), |
| inputs(inputs), |
| rootRank(rootRank), |
| rootTensor(rootTensor), |
| tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<at::Tensor> inputs; |
| const int rootRank; |
| const int rootTensor; |
| const uint32_t tag; |
| |
| void broadcast(at::Tensor& tensor) { |
| const auto& scalarType = tensor.scalar_type(); |
| gloo::BroadcastOptions opts(context); |
| opts.setRoot(rootRank); |
| opts.setTag(tag); |
| GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensor); |
| gloo::broadcast(opts); |
| } |
| |
| void run() override { |
| broadcast(inputs[rootTensor]); |
| |
| // Copy to non-root tensors |
| for (size_t i = 0; i < inputs.size(); i++) { |
| if (i == static_cast<size_t>(rootTensor)) { |
| continue; |
| } |
| inputs[i].copy_(inputs[rootTensor]); |
| } |
| } |
| }; |
| |
| #ifdef USE_CUDA |
| |
| class AsyncBroadcastCUDAWork : public AsyncBroadcastWork { |
| public: |
| AsyncBroadcastCUDAWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| int rootRank, |
| int rootTensor, |
| uint32_t tag) |
| : AsyncBroadcastWork(context, inputs, rootRank, rootTensor, tag) { |
| initializeStreamsEvents(inputs, streams, events); |
| |
| // Create pinned host side tensors. |
| tmp = pinnedLike(inputs[rootTensor]); |
| at::cuda::OptionalCUDAStreamGuard guard; |
| if (context->rank == rootRank) { |
| guard.reset_stream(streams[rootTensor]); |
| tmp.copy_(inputs[rootTensor], /* non_blocking */ true); |
| } |
| } |
| |
| void run() override { |
| at::cuda::OptionalCUDAStreamGuard guard; |
| |
| // Synchronize with copy operation if applicable. |
| if (context->rank == rootRank) { |
| guard.reset_stream(streams[rootTensor]); |
| AT_CUDA_CHECK(cudaStreamSynchronize(streams[rootTensor])); |
| } |
| |
| // Run broadcast on host side tensors. |
| broadcast(tmp); |
| |
| // Kick off copy back to the CUDA tensors. |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.reset_stream(streams[i]); |
| inputs[i].copy_(tmp, /* non_blocking */ true); |
| events[i].record(streams[i]); |
| } |
| } |
| |
| void synchronize() override { |
| at::cuda::OptionalCUDAGuard guard; |
| |
| // Synchronize with the copy back to CUDA tensors. |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.set_index(inputs[i].device().index()); |
| events[i].block(at::cuda::getCurrentCUDAStream()); |
| } |
| } |
| |
| at::Tensor tmp; |
| std::vector<at::cuda::CUDAStream> streams; |
| std::vector<at::cuda::CUDAEvent> events; |
| }; |
| |
| #endif |
| |
| } // namespace |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::broadcast( |
| std::vector<at::Tensor>& inputs, |
| const BroadcastOptions& opts) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument("ProcessGroupGloo::broadcast: " + msg); |
| }; |
| |
| assertRootRank(invalidArgument, opts.rootRank, size_); |
| assertRootTensor(invalidArgument, opts.rootTensor, inputs.size()); |
| assertDense(invalidArgument, inputs); |
| assertTypeAndSizesMatch(invalidArgument, inputs); |
| |
| const auto& device = inputs[0].device(); |
| switch (device.type()) { |
| case at::kCPU: |
| #ifdef USE_CUDA |
| case at::kCUDA: |
| #endif |
| break; |
| default: |
| invalidArgument(c10::str("unsupported device type ", device.type())); |
| } |
| |
| std::shared_ptr<AsyncBroadcastWork> work; |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| if (device.type() == at::kCPU) { |
| work = std::make_shared<AsyncBroadcastWork>( |
| std::move(context), inputs, opts.rootRank, opts.rootTensor, tag); |
| #ifdef USE_CUDA |
| } else if (device.type() == at::kCUDA) { |
| work = std::make_shared<AsyncBroadcastCUDAWork>( |
| std::move(context), inputs, opts.rootRank, opts.rootTensor, tag); |
| #endif |
| } else { |
| throw std::runtime_error("Invalid backend"); |
| } |
| |
| enqueue(work); |
| return work; |
| } |
| |
| namespace { |
| |
| class AsyncAllreduceWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncAllreduceWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| ReduceOp reduceOp, |
| uint32_t tag) |
| : context(context), inputs(inputs), reduceOp(reduceOp), tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<at::Tensor> inputs; |
| const ReduceOp reduceOp; |
| const uint32_t tag; |
| |
| void allreduce(std::vector<at::Tensor>& tensors) { |
| const auto& scalarType = tensors[0].scalar_type(); |
| gloo::AllreduceOptions opts(context); |
| opts.setReduceFunction(getFunction(scalarType, reduceOp)); |
| opts.setTag(tag); |
| GENERATE_ALL_TYPES(scalarType, setOutputs, opts, tensors); |
| gloo::allreduce(opts); |
| } |
| |
| void run() override { |
| allreduce(inputs); |
| |
| // Only the first output in the tensor list contains the results. |
| // See https://github.com/facebookincubator/gloo/issues/152. |
| // The contents is the same for every entry in the tensor list, so |
| // we can use the first entry as the source of the copy below. |
| for (size_t i = 1; i < inputs.size(); i++) { |
| inputs[i].copy_(inputs[0]); |
| } |
| } |
| |
| template <typename T> |
| void getFunction(gloo::AllreduceOptions::Func& fn, const ReduceOp op) { |
| fn = toFunction<T>(op); |
| } |
| |
| gloo::AllreduceOptions::Func getFunction( |
| const at::ScalarType& dtype, |
| const ReduceOp op) { |
| gloo::AllreduceOptions::Func fn; |
| GENERATE_ALL_TYPES(dtype, getFunction, fn, op); |
| return fn; |
| } |
| }; |
| |
| class AsyncAllreduceCoalescedWork : public AsyncAllreduceWork { |
| public: |
| AsyncAllreduceCoalescedWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| ReduceOp reduceOp, |
| uint32_t tag) |
| : AsyncAllreduceWork(context, inputs, reduceOp, tag) {} |
| |
| void run() override { |
| allreduceCoalesced(inputs); |
| } |
| |
| private: |
| void allreduceCoalesced(std::vector<at::Tensor>& tensors) { |
| // reduce coalesced, flattened tensors. |
| at::Tensor coalescedTensor = flattenDenseTensors(tensors); |
| std::vector<at::Tensor> allreduceInput = {coalescedTensor}; |
| allreduce(allreduceInput); |
| |
| // separate and reshape tensors. |
| size_t offset = 0; |
| for (at::Tensor& tensor : tensors) { |
| const int64_t tensorNumel = tensor.numel(); |
| const c10::IntArrayRef tensorShape = tensor.sizes(); |
| tensor.copy_(coalescedTensor.slice(0, offset, offset + tensorNumel) |
| .view(tensorShape)); |
| offset += tensorNumel; |
| } |
| } |
| }; |
| |
| class AsyncSparseAllreduceWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncSparseAllreduceWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| uint32_t tag) |
| : context(context), inputs(inputs), tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<at::Tensor> inputs; |
| std::vector<at::Tensor> outputs; |
| const uint32_t tag; |
| |
| // We share dimensionality about the sparse tensors before collecting |
| // their contents. We assume here that the maximum number of sparse |
| // and dense dimensions is 4. This is stored in a contiguous piece of |
| // memory so that we can easily run allgather on it. |
| // |
| // The layout of this memory is as follows: |
| // |
| // - [0:4]: sparse dims |
| // - [4:8]: dense dims |
| // - [8]: nnz |
| // |
| class SparseTensorMetadata { |
| public: |
| static constexpr auto dim = 9; |
| |
| // Construct from an existing metadata tensor to facilitate structured |
| // access to metadata from peers, after gathering it. |
| explicit SparseTensorMetadata(at::Tensor metadata) |
| : metadata_(metadata), data_(metadata_.data_ptr<int64_t>()) { |
| AT_ASSERT(metadata.scalar_type() == at::kLong); |
| AT_ASSERT(metadata.dim() == 1); |
| AT_ASSERT(metadata.size(0) == dim); |
| } |
| |
| // Populate the metadata. |
| void populate_from_sparse_tensor(const at::Tensor& tensor) { |
| const auto sparse_dim = tensor.sparse_dim(); |
| AT_ASSERT(sparse_dim <= 4); |
| for (auto i = 0; i < 4; i++) { |
| if (i < sparse_dim) { |
| data_[i] = tensor.size(i); |
| } |
| } |
| const auto dense_dim = tensor.dense_dim(); |
| AT_ASSERT(dense_dim <= 4); |
| for (auto i = 0; i < 4; i++) { |
| if (i < dense_dim) { |
| data_[i + 4] = tensor.size(sparse_dim + i); |
| } |
| } |
| data_[8] = tensor._nnz(); |
| } |
| |
| std::vector<int64_t> sizes() const { |
| std::vector<int64_t> sizes; |
| // Sparse sizes |
| for (auto i = 0; i < 4; i++) { |
| if (data_[i] <= 0) { |
| break; |
| } |
| sizes.push_back(data_[i]); |
| } |
| // Dense sizes |
| for (auto i = 4; i < 8; i++) { |
| if (data_[i] <= 0) { |
| break; |
| } |
| sizes.push_back(data_[i]); |
| } |
| return sizes; |
| } |
| |
| int64_t nnz() const { |
| return data_[8]; |
| } |
| |
| protected: |
| at::Tensor metadata_; |
| int64_t* data_; |
| }; |
| |
| // Sparse allreduce is implemented with allgather on indices and values. |
| // Every process then sums the resulting sparse tensors locally. |
| // The nnz for sparse tensors may be different across processes, so first |
| // we run allgather on the nnz, and then allgather with max(nnz). |
| // We could use an allgatherv for this, if it were available. |
| at::Tensor allreduce(std::vector<at::Tensor>& tensors) { |
| // TODO: This is a massive hack! There is some confusion about |
| // Variable/Tensor inside the body of this function. Turning off |
| // grad smooths over the confusion for now. This fixes |
| // test/test_c10d.py ProcessGroupGlooTest.test_sparse_allreduce_basics |
| // |
| // The correct fix is to stop allocating tensors that are not variables, |
| // but to conveniently do this c10d must depend on torch not ATen |
| at::AutoNonVariableTypeMode _no_grad(true); |
| auto input = tensors[0]; |
| |
| // Perform local reduction if we have multiple inputs. |
| for (size_t i = 1; i < tensors.size(); i++) { |
| input += tensors[i]; |
| } |
| |
| // Need to coalesce before we can access indices and values. |
| input = input.coalesce(); |
| |
| // Gather metadata information from all ranks. |
| auto metadata = allgather_metadata(input); |
| |
| // Sanity check dimensionality across ranks. |
| { |
| const auto expected = metadata[context->rank].sizes(); |
| for (auto i = 0; i < context->size; i++) { |
| if (i == context->rank) { |
| continue; |
| } |
| const auto actual = metadata[i].sizes(); |
| TORCH_CHECK(actual == expected, "Sparse dimensions do not match"); |
| } |
| } |
| |
| // Gather all indices and all values. |
| auto indices = allgather_indices(input, metadata); |
| auto values = allgather_values(input, metadata); |
| |
| // Perform global reduction. |
| AT_ASSERT(static_cast<int>(indices.size()) == context->size); |
| AT_ASSERT(static_cast<int>(values.size()) == context->size); |
| auto output = at::sparse_coo_tensor( |
| indices[0], values[0], input.sizes(), input.options()); |
| for (auto i = 1; i < context->size; i++) { |
| output += at::sparse_coo_tensor( |
| indices[i], values[i], input.sizes(), input.options()); |
| } |
| |
| // Coalesce for good measure. |
| return output.coalesce(); |
| } |
| |
| void run() override { |
| auto output = allreduce(inputs); |
| |
| // Copy back to input tensors. |
| outputs.reserve(inputs.size()); |
| for (size_t i = 0; i < inputs.size(); i++) { |
| inputs[i].copy_(output); |
| if (output.is_sparse()) { |
| outputs.push_back(output.clone()); |
| } else { |
| outputs.push_back(output.clone(at::MemoryFormat::Contiguous)); |
| } |
| } |
| } |
| |
| std::vector<at::Tensor> result() const override { |
| return outputs; |
| } |
| |
| private: |
| std::vector<SparseTensorMetadata> allgather_metadata( |
| const at::Tensor& tensor) { |
| auto buffer = |
| at::zeros({context->size, SparseTensorMetadata::dim}, at::kLong); |
| |
| // Prepare metadata vector (1 entry per rank) |
| std::vector<SparseTensorMetadata> metadata; |
| metadata.reserve(context->size); |
| for (auto i = 0; i < context->size; i++) { |
| metadata.emplace_back(buffer.select(0, i)); |
| } |
| |
| // Populate data for this rank |
| metadata[context->rank].populate_from_sparse_tensor(tensor); |
| |
| // Allgather metadata |
| gloo::AllgatherOptions opts(context); |
| opts.setOutput(buffer.data_ptr<int64_t>(), buffer.numel()); |
| opts.setTag(tag); |
| gloo::allgather(opts); |
| |
| return metadata; |
| } |
| |
| std::vector<at::Tensor> allgather_indices( |
| const at::Tensor& tensor, |
| const std::vector<SparseTensorMetadata>& metadata) { |
| const auto sparseDim = tensor.sparse_dim(); |
| |
| std::vector<size_t> counts(context->size); |
| int64_t totalSize = 0; |
| for (size_t i = 0; i < metadata.size(); i++) { |
| counts[i] = metadata[i].nnz() * sparseDim; |
| totalSize += counts[i]; |
| } |
| |
| auto output = at::empty({totalSize}, at::kLong); |
| |
| // tensors copied from cuda may not be contiguous, get a contiguous |
| // tensor before use its data_ptr |
| auto input = tensor.indices().contiguous(); |
| |
| // Allgatherv indices. |
| gloo::AllgathervOptions opts(context); |
| opts.setInput(input.data_ptr<int64_t>(), input.numel()); |
| opts.setOutput(output.data_ptr<int64_t>(), counts); |
| opts.setTag(tag); |
| gloo::allgatherv(opts); |
| |
| // Compile indices tensor per rank. |
| std::vector<at::Tensor> indices; |
| indices.reserve(metadata.size()); |
| size_t offset = 0; |
| for (size_t i = 0; i < metadata.size(); i++) { |
| const auto nnz = metadata[i].nnz(); |
| const auto numel = sparseDim * nnz; |
| indices.push_back( |
| output.narrow(0, offset, numel).reshape({sparseDim, nnz})); |
| offset += numel; |
| } |
| |
| return indices; |
| } |
| |
| std::vector<at::Tensor> allgather_values( |
| const at::Tensor& tensor, |
| const std::vector<SparseTensorMetadata>& metadata) { |
| // There are nnz #dense_dim()-dimensional tensors per rank. |
| const auto valueShape = tensor.sizes().slice(tensor.sparse_dim()); |
| size_t denseNumel = 1; |
| for (auto dim : valueShape) { |
| denseNumel *= dim; |
| } |
| |
| std::vector<size_t> counts(context->size); |
| int64_t totalSize = 0; |
| for (size_t i = 0; i < metadata.size(); i++) { |
| counts[i] = metadata[i].nnz() * denseNumel; |
| totalSize += counts[i]; |
| } |
| |
| auto output = at::empty({totalSize}, tensor.scalar_type()); |
| |
| // Allgatherv indices. |
| gloo::AllgathervOptions opts(context); |
| // tensors copied from cuda may not be contiguous, get a contiguous |
| // tensor before use its data_ptr |
| at::Tensor valueTensor = tensor.values().contiguous(); |
| GENERATE_ALL_TYPES(valueTensor.scalar_type(), setInput, opts, valueTensor); |
| GENERATE_ALL_TYPES( |
| valueTensor.scalar_type(), setOutput, opts, output, counts); |
| opts.setTag(tag); |
| gloo::allgatherv(opts); |
| |
| // Compile values tensor per rank. |
| std::vector<at::Tensor> values; |
| values.reserve(metadata.size()); |
| size_t offset = 0; |
| for (size_t i = 0; i < metadata.size(); i++) { |
| const auto nnz = metadata[i].nnz(); |
| const auto numel = denseNumel * nnz; |
| auto tensorShape = std::vector<int64_t>({(int64_t)nnz}); |
| std::copy( |
| valueShape.begin(), |
| valueShape.end(), |
| std::back_inserter(tensorShape)); |
| values.push_back(output.narrow(0, offset, numel).reshape(tensorShape)); |
| offset += numel; |
| } |
| |
| return values; |
| } |
| }; |
| |
| #ifdef USE_CUDA |
| |
| class AsyncAllreduceCUDAWork : public AsyncAllreduceWork { |
| public: |
| AsyncAllreduceCUDAWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| ReduceOp reduceOp, |
| uint32_t tag) |
| : AsyncAllreduceWork(context, inputs, reduceOp, tag) { |
| initializeStreamsEvents(inputs, streams, events); |
| |
| // Kick off copy from CUDA tensors to pinned CPU tensors. |
| tmp.reserve(inputs.size()); |
| at::cuda::OptionalCUDAStreamGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.reset_stream(streams[i]); |
| tmp.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true)); |
| } |
| } |
| |
| void run() override { |
| // Synchronize with copy operations. |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| device_guard.set_index(inputs[i].device().index()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(streams[i])); |
| } |
| |
| // Run allreduce on host side tensors. |
| allreduce(tmp); |
| |
| // Kick off copy back to the CUDA tensors. |
| // Only the first output in the tensor list contains the results. |
| // See https://github.com/facebookincubator/gloo/issues/152. |
| // The contents is the same for every entry in the tensor list, so |
| // we can use the first entry as the source of the copy below. |
| at::cuda::OptionalCUDAStreamGuard stream_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| stream_guard.reset_stream(streams[i]); |
| inputs[i].copy_(tmp[0], /* non_blocking */ true); |
| events[i].record(streams[i]); |
| } |
| } |
| |
| void synchronize() override { |
| // Synchronize with the copy back to CUDA tensors. |
| at::cuda::OptionalCUDAGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.set_index(inputs[i].device().index()); |
| events[i].block(at::cuda::getCurrentCUDAStream()); |
| } |
| } |
| |
| std::vector<at::Tensor> tmp; |
| std::vector<at::cuda::CUDAStream> streams; |
| std::vector<at::cuda::CUDAEvent> events; |
| }; |
| |
| class AsyncSparseAllreduceCUDAWork : public AsyncSparseAllreduceWork { |
| public: |
| AsyncSparseAllreduceCUDAWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| uint32_t tag) |
| : AsyncSparseAllreduceWork(context, inputs, tag) { |
| initializeStreamsEvents(inputs, streams, events); |
| |
| // Kick off copy from CUDA tensors to CPU tensors. |
| // Note that both coalescing the sparse tensor and copying it to CPU |
| // memory must be performed asynchronously, or we block the caller. |
| tmp.reserve(inputs.size()); |
| at::cuda::OptionalCUDAStreamGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.reset_stream(streams[i]); |
| tmp.push_back( |
| inputs[i].coalesce().to(at::DeviceType::CPU, /*non_blocking=*/true)); |
| } |
| } |
| |
| void run() override { |
| // Synchronize with copy operations. |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| device_guard.set_index(inputs[i].device().index()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(streams[i])); |
| } |
| |
| // Run allreduce on host side tensors. |
| auto output = allreduce(tmp); |
| |
| // Kick off copy back to the CUDA tensors. |
| at::cuda::OptionalCUDAStreamGuard stream_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| stream_guard.reset_stream(streams[i]); |
| outputs.push_back(output.to(inputs[i].device(), /*non_blocking=*/true)); |
| events[i].record(streams[i]); |
| } |
| } |
| |
| void synchronize() override { |
| // Synchronize with the copy back to CUDA tensors. |
| at::cuda::OptionalCUDAGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.set_index(inputs[i].device().index()); |
| events[i].block(at::cuda::getCurrentCUDAStream()); |
| } |
| |
| // Copy outputs back to inputs after synchronization, so that users can |
| // access all reduce results from input tensors |
| for (size_t i = 0; i < inputs.size(); i++) { |
| inputs[i].copy_(outputs[i]); |
| } |
| } |
| |
| std::vector<at::Tensor> tmp; |
| std::vector<at::cuda::CUDAStream> streams; |
| std::vector<at::cuda::CUDAEvent> events; |
| }; |
| |
| #endif |
| |
| } // namespace |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allreduce( |
| std::vector<at::Tensor>& inputs, |
| const AllreduceOptions& opts) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument("ProcessGroupGloo::allreduce: " + msg); |
| }; |
| |
| assertNonEmpty(invalidArgument, inputs); |
| assertLayoutMatch(invalidArgument, inputs); |
| assertTypeAndSizesMatch(invalidArgument, inputs); |
| |
| const auto& device = inputs[0].device(); |
| switch (device.type()) { |
| case at::kCPU: |
| #ifdef USE_CUDA |
| case at::kCUDA: |
| #endif |
| break; |
| default: |
| invalidArgument(c10::str("unsupported device type ", device.type())); |
| } |
| |
| const auto& layout = inputs[0].layout(); |
| if (layout == c10::kSparse && opts.reduceOp != ReduceOp::SUM) { |
| invalidArgument( |
| "unsupported reduction operation " |
| "(allreduce of sparse tensors only works with ReduceOp.SUM)"); |
| } |
| |
| std::shared_ptr<AsyncWork> work; |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| if (device.type() == at::kCPU) { |
| if (layout == c10::kStrided) { |
| work = std::make_shared<AsyncAllreduceWork>( |
| std::move(context), inputs, opts.reduceOp, tag); |
| } else if (layout == c10::kSparse) { |
| work = std::make_shared<AsyncSparseAllreduceWork>( |
| std::move(context), inputs, tag); |
| } else { |
| invalidArgument("unsupported layout"); |
| } |
| #ifdef USE_CUDA |
| } else if (device.type() == at::kCUDA) { |
| if (layout == c10::kStrided) { |
| work = std::make_shared<AsyncAllreduceCUDAWork>( |
| std::move(context), inputs, opts.reduceOp, tag); |
| } else if (layout == c10::kSparse) { |
| work = std::make_shared<AsyncSparseAllreduceCUDAWork>( |
| std::move(context), inputs, tag); |
| } else { |
| invalidArgument("unsupported layout"); |
| } |
| #endif |
| } else { |
| throw std::runtime_error("Invalid backend"); |
| } |
| |
| enqueue(work); |
| return work; |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allreduce_coalesced( |
| std::vector<at::Tensor>& tensors, |
| const AllreduceCoalescedOptions& opts) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument( |
| "ProcessGroupGloo::allreduce_coalesced: " + msg); |
| }; |
| assertNonEmpty(invalidArgument, tensors); |
| |
| // tensors will be flattened and concatenated (coalesced). This means that |
| // input |
| // tensors must have the same device, layout and type. |
| assertLayoutMatch(invalidArgument, tensors); |
| if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) { |
| return t.options().type_equal(tensors[0].options()); |
| })) { |
| invalidArgument("tensors must all have the same type"); |
| } |
| if (!std::all_of(tensors.begin(), tensors.end(), [&](at::Tensor& t) { |
| return t.device() == tensors[0].device(); |
| })) { |
| invalidArgument("tensors must all be on the same device"); |
| } |
| |
| const c10::Device& device = tensors[0].device(); |
| const c10::Layout& layout = tensors[0].layout(); |
| |
| // invalid arguments are detected early here before any calls to nextTag() |
| // which result in the collectiveCounter_ being incremented. |
| switch (device.type()) { |
| case c10::kCPU: |
| break; |
| default: |
| invalidArgument(c10::str("unsupported device type ", device.type())); |
| } |
| |
| switch (layout) { |
| case c10::kStrided: |
| break; |
| default: |
| invalidArgument("unsupported layout"); |
| } |
| |
| std::shared_ptr<AsyncWork> work; |
| const uint32_t tag = nextTag(); |
| std::shared_ptr<gloo::Context> context = getContext(tag); |
| if (device.type() == c10::kCPU) { |
| if (layout == c10::kStrided) { |
| work = std::make_shared<AsyncAllreduceCoalescedWork>( |
| std::move(context), tensors, opts.reduceOp, tag); |
| } else { |
| invalidArgument("unsupported layout"); |
| } |
| } else { |
| throw std::runtime_error("Invalid backend"); |
| } |
| enqueue(work); |
| return work; |
| } |
| |
| namespace { |
| |
| class AsyncReduceWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncReduceWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| int rootRank, |
| int rootTensor, |
| ReduceOp reduceOp, |
| uint32_t tag) |
| : context(context), |
| inputs(inputs), |
| rootRank(rootRank), |
| rootTensor(rootTensor), |
| reduceOp(reduceOp), |
| tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<at::Tensor> inputs; |
| const int rootRank; |
| const int rootTensor; |
| const ReduceOp reduceOp; |
| const uint32_t tag; |
| |
| void reduce(std::vector<at::Tensor>& tensors) { |
| const auto& scalarType = tensors[0].scalar_type(); |
| gloo::ReduceOptions opts(context); |
| opts.setRoot(rootRank); |
| opts.setTag(tag); |
| opts.setReduceFunction(getFunction(scalarType, reduceOp)); |
| GENERATE_ALL_TYPES(scalarType, setOutput, opts, tensors[0]); |
| gloo::reduce(opts); |
| } |
| |
| void run() override { |
| reduce(inputs); |
| } |
| |
| protected: |
| template <typename T> |
| void getFunction(gloo::ReduceOptions::Func& fn, const ReduceOp op) { |
| fn = toFunction<T>(op); |
| } |
| |
| gloo::ReduceOptions::Func getFunction( |
| const at::ScalarType& dtype, |
| const ReduceOp op) { |
| gloo::ReduceOptions::Func fn; |
| GENERATE_ALL_TYPES(dtype, getFunction, fn, op); |
| return fn; |
| } |
| }; |
| |
| #ifdef USE_CUDA |
| |
| class AsyncReduceCUDAWork : public AsyncReduceWork { |
| public: |
| AsyncReduceCUDAWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& inputs, |
| int rootRank, |
| int rootTensor, |
| ReduceOp reduceOp, |
| uint32_t tag) |
| : AsyncReduceWork(context, inputs, rootRank, rootTensor, reduceOp, tag) { |
| initializeStreamsEvents(inputs, streams, events); |
| |
| // Kick off copy from CUDA tensors to pinned CPU tensors. |
| tmp.reserve(inputs.size()); |
| at::cuda::OptionalCUDAStreamGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.reset_stream(streams[i]); |
| tmp.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true)); |
| } |
| } |
| |
| void run() override { |
| // Synchronize with copy operations. |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| device_guard.set_index(inputs[i].device().index()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(streams[i])); |
| } |
| |
| // Run reduce on host side tensors. |
| reduce(tmp); |
| |
| // Kick off copy back to the CUDA tensors. |
| at::cuda::OptionalCUDAStreamGuard stream_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| stream_guard.reset_stream(streams[i]); |
| inputs[i].copy_(tmp[i], /* non_blocking */ true); |
| events[i].record(streams[i]); |
| } |
| } |
| |
| void synchronize() override { |
| // Synchronize with the copy back to CUDA tensors. |
| at::cuda::OptionalCUDAGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.set_index(inputs[i].device().index()); |
| events[i].block(at::cuda::getCurrentCUDAStream()); |
| } |
| } |
| |
| std::vector<at::Tensor> tmp; |
| std::vector<at::cuda::CUDAStream> streams; |
| std::vector<at::cuda::CUDAEvent> events; |
| }; |
| |
| #endif |
| |
| } // namespace |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::reduce( |
| std::vector<at::Tensor>& inputs, |
| const ReduceOptions& opts) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument("ProcessGroupGloo::reduce: " + msg); |
| }; |
| |
| assertRootRank(invalidArgument, opts.rootRank, size_); |
| assertRootTensor(invalidArgument, opts.rootTensor, inputs.size()); |
| assertSingleElement(invalidArgument, inputs); |
| assertDense(invalidArgument, inputs); |
| |
| const auto& device = inputs[0].device(); |
| switch (device.type()) { |
| case at::kCPU: |
| #ifdef USE_CUDA |
| case at::kCUDA: |
| #endif |
| break; |
| default: |
| invalidArgument(c10::str("unsupported device type ", device.type())); |
| } |
| |
| std::shared_ptr<AsyncReduceWork> work; |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| if (device.type() == at::kCPU) { |
| work = std::make_shared<AsyncReduceWork>( |
| std::move(context), |
| inputs, |
| opts.rootRank, |
| opts.rootTensor, |
| opts.reduceOp, |
| tag); |
| #ifdef USE_CUDA |
| } else if (device.type() == at::kCUDA) { |
| work = std::make_shared<AsyncReduceCUDAWork>( |
| std::move(context), |
| inputs, |
| opts.rootRank, |
| opts.rootTensor, |
| opts.reduceOp, |
| tag); |
| #endif |
| } else { |
| throw std::runtime_error("Invalid backend"); |
| } |
| enqueue(work); |
| return work; |
| } |
| |
| namespace { |
| |
| class AsyncAllgatherWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncAllgatherWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs, |
| uint32_t tag) |
| : context(context), outputs(outputs), inputs(inputs), tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<std::vector<at::Tensor>> outputs; |
| std::vector<at::Tensor> inputs; |
| const uint32_t tag; |
| |
| void allgather( |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs) { |
| const auto& scalarType = inputs[0].scalar_type(); |
| gloo::AllgatherOptions opts(context); |
| opts.setTag(tag); |
| |
| // Use single flattened input tensor. |
| at::Tensor flatInputTensor = flattenDenseTensors(inputs); |
| GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor); |
| |
| // Use single flat output tensor. |
| // The first dimension corresponds to the index into outputs[N], |
| // so copying into the actual output later is easy. |
| at::Tensor flatOutputTensor = newLikeFlat(outputs[0]); |
| GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor); |
| gloo::allgather(opts); |
| |
| // Unflatten into output tensors. |
| for (size_t i = 0; i < outputs.size(); i++) { |
| for (size_t j = 0; j < outputs[i].size(); j++) { |
| outputs[i][j].copy_(flatOutputTensor[j]); |
| } |
| } |
| } |
| |
| void run() override { |
| allgather(outputs, inputs); |
| } |
| }; |
| |
| #ifdef USE_CUDA |
| |
| // Note: current CUDA implementation holds the assumption that the |
| // tensors in the nested output tensor vectors are on the same device. |
| class AsyncAllgatherCUDAWork : public AsyncAllgatherWork { |
| public: |
| AsyncAllgatherCUDAWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs, |
| uint32_t tag) |
| : AsyncAllgatherWork(context, outputs, inputs, tag) { |
| initializeStreamsEvents(inputs, inputStreams, inputEvents); |
| initializeStreamsEvents(outputs, outputStreams, outputEvents); |
| |
| // Kick off copy from CUDA tensors to pinned CPU tensors. |
| tmpInputs.reserve(inputs.size()); |
| at::cuda::OptionalCUDAStreamGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.reset_stream(inputStreams[i]); |
| tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true)); |
| } |
| |
| tmpOutputs.resize(outputs.size()); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| tmpOutputs[i].reserve(outputs[i].size()); |
| for (size_t j = 0; j < outputs[i].size(); j++) { |
| tmpOutputs[i].push_back(pinnedLike(outputs[i][j])); |
| } |
| } |
| } |
| |
| void run() override { |
| // Synchronize with copy operations. |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| device_guard.set_index(inputs[i].device().index()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(inputStreams[i])); |
| } |
| |
| for (size_t i = 0; i < outputs.size(); i++) { |
| device_guard.set_index(outputs[i][0].device().index()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(outputStreams[i])); |
| } |
| |
| // Run allgather on host side tensors. |
| allgather(tmpOutputs, tmpInputs); |
| |
| // Kick off copy back to the CUDA tensors. |
| at::cuda::OptionalCUDAStreamGuard stream_guard; |
| for (size_t i = 0; i < outputs.size(); i++) { |
| stream_guard.reset_stream(outputStreams[i]); |
| for (size_t j = 0; j < outputs[i].size(); j++) { |
| outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true); |
| } |
| outputEvents[i].record(outputStreams[i]); |
| } |
| } |
| |
| void synchronize() override { |
| // Synchronize with the copy back to CUDA tensors. |
| at::cuda::OptionalCUDAGuard guard; |
| for (size_t i = 0; i < outputs.size(); i++) { |
| guard.set_index(outputs[i][0].device().index()); |
| outputEvents[i].block(at::cuda::getCurrentCUDAStream()); |
| } |
| } |
| |
| std::vector<at::Tensor> tmpInputs; |
| std::vector<at::cuda::CUDAStream> inputStreams; |
| std::vector<at::cuda::CUDAEvent> inputEvents; |
| |
| std::vector<std::vector<at::Tensor>> tmpOutputs; |
| std::vector<at::cuda::CUDAStream> outputStreams; |
| std::vector<at::cuda::CUDAEvent> outputEvents; |
| }; |
| |
| #endif |
| |
| } // namespace |
| |
| // Note: current CUDA implementation holds the assumption that the |
| // tensors in the nested output tensor vectors are on the same device. |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allgather( |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs, |
| const AllgatherOptions& opts) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument("ProcessGroupGloo::allgather: " + msg); |
| }; |
| |
| if (inputs.size() == 0) { |
| invalidArgument("requires non-empty input tensor list"); |
| } |
| |
| if (inputs.size() != outputs.size()) { |
| invalidArgument( |
| "requires input/output tensor lists to have the same length"); |
| } |
| |
| for (size_t i = 0; i < outputs.size(); i++) { |
| const auto expected = inputs.size() * getSize(); |
| const auto actual = outputs[i].size(); |
| if (actual != expected) { |
| invalidArgument( |
| "invalid output tensor list at index " + std::to_string(i) + |
| " (expected length " + std::to_string(expected) + ", got " + |
| std::to_string(actual) + ")"); |
| } |
| } |
| |
| assertDense(invalidArgument, inputs); |
| |
| // Expect all input/output tensors to have the same type and sizes |
| const auto& options = inputs[0].options(); |
| const auto& sizes = inputs[0].sizes(); |
| assertTypeAndSizesMatch(invalidArgument, inputs, options, sizes); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| assertTypeAndSizesMatch(invalidArgument, outputs[i], options, sizes); |
| } |
| |
| const auto& device = inputs[0].device(); |
| switch (device.type()) { |
| case at::kCPU: |
| #ifdef USE_CUDA |
| case at::kCUDA: |
| #endif |
| break; |
| default: |
| invalidArgument(c10::str("unsupported device type ", device.type())); |
| } |
| |
| std::shared_ptr<AsyncAllgatherWork> work; |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| if (device.type() == at::kCPU) { |
| work = std::make_shared<AsyncAllgatherWork>( |
| std::move(context), outputs, inputs, tag); |
| #ifdef USE_CUDA |
| } else if (device.type() == at::kCUDA) { |
| work = std::make_shared<AsyncAllgatherCUDAWork>( |
| std::move(context), outputs, inputs, tag); |
| #endif |
| } else { |
| throw std::runtime_error("Invalid backend"); |
| } |
| enqueue(work); |
| return work; |
| } |
| |
| namespace { |
| |
| class AsyncAllgatherCoalescedWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncAllgatherCoalescedWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<std::vector<at::Tensor>>& output_lists, |
| std::vector<at::Tensor>& input_list, |
| uint32_t tag) |
| : context(context), |
| output_lists(output_lists), |
| input_list(input_list), |
| tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<std::vector<at::Tensor>> output_lists; |
| std::vector<at::Tensor> input_list; |
| const uint32_t tag; |
| |
| void allgather_coalesced() { |
| assert(!output_lists.empty()); |
| assert(!output_lists[0].empty()); |
| assert(!input_list.empty()); |
| |
| const auto& scalarType = input_list[0].scalar_type(); |
| gloo::AllgatherOptions opts(context); |
| opts.setTag(tag); |
| |
| // Use single flattened input tensor. |
| at::Tensor flatInputTensor = flattenDenseTensors(input_list); |
| GENERATE_ALL_TYPES(scalarType, setInput, opts, flatInputTensor); |
| |
| // Compute total number of elements we need to allocate for all tensors |
| // requested. |
| int64_t output_numel = 0; |
| for (const auto& t : output_lists[0]) { |
| output_numel += t.numel(); |
| } |
| output_numel *= output_lists.size(); |
| // Use single flat output tensor. |
| at::Tensor flatOutputTensor = |
| at::empty({output_numel}, output_lists[0][0].options()); |
| GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor); |
| gloo::allgather(opts); |
| |
| int64_t current_element = 0; |
| for (auto& output_list : output_lists) { |
| for (auto& output_tensor : output_list) { |
| output_tensor.copy_( |
| flatOutputTensor.narrow(0, current_element, output_tensor.numel()) |
| .reshape(output_tensor.sizes()), |
| true); |
| current_element += output_tensor.numel(); |
| } |
| } |
| } |
| |
| void run() override { |
| allgather_coalesced(); |
| } |
| }; |
| |
| } // namespace |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allgather_coalesced( |
| std::vector<std::vector<at::Tensor>>& output_lists, |
| std::vector<at::Tensor>& input_list, |
| const AllgatherOptions& /* unused */) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument( |
| "ProcessGroupGloo::allgather_coalesced: " + msg); |
| }; |
| |
| if (input_list.empty()) { |
| invalidArgument("requires non-empty input tensor list"); |
| } |
| |
| if (output_lists.size() != getSize()) { |
| invalidArgument("output lists should be equal to world size"); |
| } |
| |
| assertSameDevice(invalidArgument, input_list); |
| |
| // Expect i'th tensor of each list from 'output_lists' match i'th tensor |
| // from 'input_list' in type and size. |
| for (const auto& output_list : output_lists) { |
| if (output_list.size() != input_list.size()) { |
| invalidArgument( |
| "invalid output size: (expected length " + |
| std::to_string(input_list.size()) + ", got " + |
| std::to_string(output_list.size()) + ")"); |
| } |
| for (int i = 0; i < output_list.size(); ++i) { |
| const auto expected = input_list[i].sizes(); |
| const auto actual = output_list[i].sizes(); |
| if (actual != expected) { |
| invalidArgument( |
| "invalid size of output tensor at index " + std::to_string(i) + |
| " (expected length " + toString(expected) + ", got " + |
| toString(actual) + ")"); |
| } |
| if (!input_list[i].options().type_equal(output_list[i].options())) { |
| invalidArgument( |
| "invalid tensor type at index " + std::to_string(i) + |
| " (expected " + input_list[i].toString() + ", got " + |
| output_list[i].toString() + ")"); |
| } |
| } |
| } |
| |
| assertDense(invalidArgument, input_list); |
| |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| auto work = std::make_shared<AsyncAllgatherCoalescedWork>( |
| std::move(context), output_lists, input_list, tag); |
| enqueue(work); |
| return work; |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allgather_base( |
| at::Tensor& /*unused */, |
| at::Tensor& /*unused */, |
| const AllgatherOptions& /*unused */) { |
| throw std::runtime_error( |
| "no support for allgather_base in Gloo process group"); |
| } |
| |
| namespace { |
| |
| class AsyncGatherWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncGatherWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs, |
| int root, |
| uint32_t tag) |
| : context(context), |
| outputs(outputs), |
| inputs(inputs), |
| root(root), |
| tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<std::vector<at::Tensor>> outputs; |
| std::vector<at::Tensor> inputs; |
| const int root; |
| const uint32_t tag; |
| |
| void gather( |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs) { |
| const auto scalarType = inputs[0].scalar_type(); |
| gloo::GatherOptions opts(context); |
| opts.setRoot(root); |
| opts.setTag(tag); |
| |
| // Set single temporary tensor on root process. |
| // This is later scattered to the separate output tensors. |
| at::Tensor flatOutputTensor; |
| if (context->rank == root) { |
| flatOutputTensor = newLikeFlat(outputs[0]); |
| GENERATE_ALL_TYPES(scalarType, setOutput, opts, flatOutputTensor); |
| } |
| |
| // Set single input tensor on all processes. |
| GENERATE_ALL_TYPES(scalarType, setInput, opts, inputs[0]); |
| gloo::gather(opts); |
| |
| // Unflatten into output tensors on root process. |
| if (context->rank == root) { |
| for (size_t i = 0; i < outputs[0].size(); i++) { |
| outputs[0][i].copy_(flatOutputTensor[i]); |
| } |
| } |
| } |
| |
| void run() override { |
| gather(outputs, inputs); |
| } |
| }; |
| |
| #ifdef USE_CUDA |
| |
| // Note: current CUDA implementation holds the assumptions: |
| // - inputs.size() is 1 |
| // - outputs.size() is 1 |
| // - the size of the nested output tensors is world size, i.e., |
| // outputs[0].size, is world size |
| class AsyncGatherCUDAWork : public AsyncGatherWork { |
| public: |
| AsyncGatherCUDAWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs, |
| int root, |
| uint32_t tag) |
| : AsyncGatherWork(context, outputs, inputs, root, tag) { |
| initializeStreamsEvents(inputs, inputStreams, inputEvents); |
| initializeStreamsEvents(outputs, outputStreams, outputEvents); |
| |
| // Kick off copy from CUDA tensors to pinned CPU tensors. |
| tmpInputs.reserve(inputs.size()); |
| at::cuda::OptionalCUDAStreamGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.reset_stream(inputStreams[i]); |
| tmpInputs.push_back(pinnedLike(inputs[i]).copy_(inputs[i], true)); |
| } |
| |
| tmpOutputs.resize(outputs.size()); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| tmpOutputs[i].reserve(outputs[i].size()); |
| for (size_t j = 0; j < outputs[i].size(); j++) { |
| tmpOutputs[i].push_back(pinnedLike(outputs[i][j])); |
| } |
| } |
| } |
| |
| void run() override { |
| // Synchronize with copy operations. |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| device_guard.set_index(inputs[i].get_device()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(inputStreams[i])); |
| } |
| |
| for (size_t i = 0; i < outputs.size(); i++) { |
| device_guard.set_index(outputs[i][0].get_device()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(outputStreams[i])); |
| } |
| |
| // Run gather on host side tensors. |
| gather(tmpOutputs, tmpInputs); |
| |
| // Kick off copy back to the CUDA tensors. |
| at::cuda::OptionalCUDAStreamGuard stream_guard; |
| for (size_t i = 0; i < outputs.size(); i++) { |
| stream_guard.reset_stream(outputStreams[i]); |
| for (size_t j = 0; j < outputs[i].size(); j++) { |
| outputs[i][j].copy_(tmpOutputs[i][j], /* non_blocking */ true); |
| } |
| outputEvents[i].record(outputStreams[i]); |
| } |
| } |
| |
| void synchronize() override { |
| // Synchronize with the copy back to CUDA tensors. |
| at::cuda::OptionalCUDAGuard guard; |
| for (size_t i = 0; i < outputs.size(); i++) { |
| guard.set_index(static_cast<at::DeviceIndex>(outputs[i][0].get_device())); |
| outputEvents[i].block(at::cuda::getCurrentCUDAStream()); |
| } |
| } |
| |
| std::vector<at::Tensor> tmpInputs; |
| std::vector<at::cuda::CUDAStream> inputStreams; |
| std::vector<at::cuda::CUDAEvent> inputEvents; |
| |
| std::vector<std::vector<at::Tensor>> tmpOutputs; |
| std::vector<at::cuda::CUDAStream> outputStreams; |
| std::vector<at::cuda::CUDAEvent> outputEvents; |
| }; |
| |
| #endif |
| |
| } // namespace |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::gather( |
| std::vector<std::vector<at::Tensor>>& outputs, |
| std::vector<at::Tensor>& inputs, |
| const GatherOptions& opts) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument("ProcessGroupGloo::gather: " + msg); |
| }; |
| |
| assertRootRank(invalidArgument, opts.rootRank, size_); |
| assertSingleElementInput(invalidArgument, inputs); |
| assertDense(invalidArgument, inputs); |
| |
| if (getRank() == opts.rootRank) { |
| if (outputs.size() != 1) { |
| std::stringstream ss; |
| ss << "requires a single-element output list containing a list with " |
| << getSize() << " tensors."; |
| invalidArgument(ss.str()); |
| } else if (outputs[0].size() != static_cast<size_t>(getSize())) { |
| std::stringstream ss; |
| ss << "Incorrect output list size " << outputs[0].size() |
| << ". Output list size should be " << getSize() |
| << ", same as size of the process group."; |
| invalidArgument(ss.str()); |
| } |
| |
| const auto& options = inputs[0].options(); |
| const auto& sizes = inputs[0].sizes(); |
| assertTypeAndSizesMatch(invalidArgument, outputs[0], options, sizes); |
| } else { |
| if (outputs.size() != 0) { |
| invalidArgument("requires empty output on non-root"); |
| } |
| } |
| |
| const auto& device = inputs[0].device(); |
| switch (device.type()) { |
| case at::kCPU: |
| #ifdef USE_CUDA |
| case at::kCUDA: |
| #endif |
| break; |
| default: |
| invalidArgument(c10::str("unsupported device type ", device.type())); |
| } |
| |
| std::shared_ptr<AsyncGatherWork> work; |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| if (device.type() == at::kCPU) { |
| work = std::make_shared<AsyncGatherWork>( |
| std::move(context), outputs, inputs, opts.rootRank, tag); |
| #ifdef USE_CUDA |
| } else if (device.type() == at::kCUDA) { |
| work = std::make_shared<AsyncGatherCUDAWork>( |
| std::move(context), outputs, inputs, opts.rootRank, tag); |
| #endif |
| } else { |
| throw std::runtime_error("Invalid backend"); |
| } |
| enqueue(work); |
| return work; |
| } |
| |
| namespace { |
| |
| class AsyncScatterWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncScatterWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& outputs, |
| std::vector<std::vector<at::Tensor>>& inputs, |
| int root, |
| uint32_t tag) |
| : context(context), |
| outputs(outputs), |
| inputs(inputs), |
| root(root), |
| tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<at::Tensor> outputs; |
| std::vector<std::vector<at::Tensor>> inputs; |
| const int root; |
| const uint32_t tag; |
| |
| void scatter( |
| std::vector<at::Tensor>& outputs, |
| std::vector<std::vector<at::Tensor>>& inputs) { |
| const auto scalarType = outputs[0].scalar_type(); |
| gloo::ScatterOptions opts(context); |
| opts.setRoot(root); |
| opts.setTag(tag); |
| |
| // Set list of input tensors on root process |
| if (context->rank == root) { |
| GENERATE_ALL_TYPES(scalarType, setInputs, opts, inputs[0]); |
| } |
| |
| // Set single output tensor on all processes |
| GENERATE_ALL_TYPES(scalarType, setOutput, opts, outputs[0]); |
| gloo::scatter(opts); |
| } |
| |
| void run() override { |
| scatter(outputs, inputs); |
| } |
| }; |
| |
| #ifdef USE_CUDA |
| |
| class AsyncScatterCUDAWork : public AsyncScatterWork { |
| public: |
| AsyncScatterCUDAWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<at::Tensor>& outputs, |
| std::vector<std::vector<at::Tensor>>& inputs, |
| int root, |
| uint32_t tag) |
| : AsyncScatterWork(context, outputs, inputs, root, tag) { |
| initializeStreamsEvents(inputs, inputStreams, inputEvents); |
| initializeStreamsEvents(outputs, outputStreams, outputEvents); |
| |
| // Kick off copy from CUDA tensors to pinned CPU tensors. |
| tmpInputs.resize(inputs.size()); |
| at::cuda::OptionalCUDAStreamGuard guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| guard.reset_stream(inputStreams[i]); |
| tmpInputs[i].reserve(inputs[i].size()); |
| for (size_t j = 0; j < inputs[i].size(); j++) { |
| tmpInputs[i].push_back( |
| pinnedLike(inputs[i][j]).copy_(inputs[i][j], true)); |
| } |
| } |
| |
| tmpOutputs.reserve(outputs.size()); |
| for (size_t i = 0; i < outputs.size(); i++) { |
| tmpOutputs.push_back(pinnedLike(outputs[i])); |
| } |
| } |
| |
| void run() override { |
| // Synchronize with copy operations. |
| at::cuda::OptionalCUDAGuard device_guard; |
| for (size_t i = 0; i < inputs.size(); i++) { |
| device_guard.set_index(inputs[i][0].get_device()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(inputStreams[i])); |
| } |
| for (size_t i = 0; i < outputs.size(); i++) { |
| device_guard.set_index(outputs[i].get_device()); |
| AT_CUDA_CHECK(cudaStreamSynchronize(outputStreams[i])); |
| } |
| |
| // Run scatter on host side tensors. |
| scatter(tmpOutputs, tmpInputs); |
| |
| // Kick off copy back to the CUDA tensors. |
| at::cuda::OptionalCUDAStreamGuard stream_guard; |
| for (size_t i = 0; i < outputs.size(); i++) { |
| stream_guard.reset_stream(outputStreams[i]); |
| outputs[i].copy_(tmpOutputs[i], /* non_blocking */ true); |
| outputEvents[i].record(outputStreams[i]); |
| } |
| } |
| |
| void synchronize() override { |
| // Synchronize with the copy back to CUDA tensors. |
| at::cuda::OptionalCUDAGuard guard; |
| for (size_t i = 0; i < outputs.size(); i++) { |
| guard.set_index(static_cast<at::DeviceIndex>(outputs[i].get_device())); |
| outputEvents[i].block(at::cuda::getCurrentCUDAStream()); |
| } |
| } |
| |
| std::vector<at::Tensor> tmpOutputs; |
| std::vector<at::cuda::CUDAStream> outputStreams; |
| std::vector<at::cuda::CUDAEvent> outputEvents; |
| |
| std::vector<std::vector<at::Tensor>> tmpInputs; |
| std::vector<at::cuda::CUDAStream> inputStreams; |
| std::vector<at::cuda::CUDAEvent> inputEvents; |
| }; |
| |
| #endif |
| |
| } // namespace |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::scatter( |
| std::vector<at::Tensor>& outputs, |
| std::vector<std::vector<at::Tensor>>& inputs, |
| const ScatterOptions& opts) { |
| static auto invalidArgument = [](const std::string& msg) { |
| throw std::invalid_argument("ProcessGroupGloo::scatter: " + msg); |
| }; |
| |
| assertRootRank(invalidArgument, opts.rootRank, size_); |
| assertSingleElementOutput(invalidArgument, outputs); |
| assertDense(invalidArgument, outputs); |
| |
| if (getRank() == opts.rootRank) { |
| if (inputs.size() != 1) { |
| std::stringstream ss; |
| ss << "requires a single-element input list containing a list with " |
| << getSize() << " tensors"; |
| invalidArgument(ss.str()); |
| } else if (inputs[0].size() != static_cast<size_t>(getSize())) { |
| std::stringstream ss; |
| ss << "Incorrect input list size " << inputs[0].size() |
| << ". Input list size should be " << getSize() |
| << ", same as size of the process group."; |
| invalidArgument(ss.str()); |
| } |
| const auto& options = outputs[0].options(); |
| const auto& sizes = outputs[0].sizes(); |
| assertTypeAndSizesMatch(invalidArgument, inputs[0], options, sizes); |
| } else { |
| if (inputs.size() != 0) { |
| invalidArgument("requires empty input on non-root"); |
| } |
| } |
| |
| const auto& device = outputs[0].device(); |
| switch (device.type()) { |
| case at::kCPU: |
| #ifdef USE_CUDA |
| case at::kCUDA: |
| #endif |
| break; |
| default: |
| invalidArgument(c10::str("unsupported device type ", device.type())); |
| } |
| |
| std::shared_ptr<AsyncScatterWork> work; |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| if (device.type() == at::kCPU) { |
| work = std::make_shared<AsyncScatterWork>( |
| std::move(context), outputs, inputs, opts.rootRank, tag); |
| #ifdef USE_CUDA |
| } else if (device.type() == at::kCUDA) { |
| work = std::make_shared<AsyncScatterCUDAWork>( |
| std::move(context), outputs, inputs, opts.rootRank, tag); |
| #endif |
| } else { |
| throw std::runtime_error("Invalid backend"); |
| } |
| enqueue(work); |
| return work; |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::reduce_scatter( |
| std::vector<at::Tensor>& outputs, |
| std::vector<std::vector<at::Tensor>>& inputs, |
| const ReduceScatterOptions& opts) { |
| throw std::runtime_error("ProcessGroupGloo does not support reduce_scatter"); |
| } |
| |
| at::Tensor& checkSingleTensor(std::vector<at::Tensor>& tensors) { |
| if (tensors.size() != 1) { |
| throw std::runtime_error("ProcessGroupGloo::send takes a single tensor"); |
| } |
| auto& tensor = tensors[0]; |
| if (!tensor.is_contiguous()) { |
| throw std::runtime_error("input tensor has to be contiguous"); |
| } |
| if (tensor.is_sparse()) { |
| throw std::runtime_error("input tensor has to be dense"); |
| } |
| return tensor; |
| } |
| |
| uint32_t checkTag(int32_t tag) { |
| if (tag < 0) { |
| throw std::runtime_error("Tag must be >= 0"); |
| } |
| return (uint32_t)tag; |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::send( |
| std::vector<at::Tensor>& tensors, |
| int dstRank, |
| int tag) { |
| auto& tensor = checkSingleTensor(tensors); |
| auto utag = checkTag(tag); |
| auto ptr = tensor.data_ptr(); |
| auto size = tensor.numel() * tensor.element_size(); |
| |
| // Construct unbound buffer. |
| auto context = getContext(tag); |
| auto buf = context->createUnboundBuffer(ptr, size); |
| buf->send(dstRank, utag); |
| |
| // The work captures the tensor to prevent it being deallocated and |
| // the unbound buffer to synchronize on completion of the send. |
| return std::make_shared<SendWork>(tensor, std::move(buf)); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::recv( |
| std::vector<at::Tensor>& tensors, |
| int srcRank, |
| int tag) { |
| auto& tensor = checkSingleTensor(tensors); |
| auto utag = checkTag(tag); |
| auto ptr = tensor.data_ptr(); |
| auto size = tensor.numel() * tensor.element_size(); |
| |
| // Construct unbound buffer. |
| auto context = getContext(tag); |
| auto buf = context->createUnboundBuffer(ptr, size); |
| buf->recv(srcRank, utag); |
| |
| // The work captures the tensor to prevent it being deallocated and |
| // the unbound buffer to synchronize on completion of the recv. |
| return std::make_shared<RecvWork>(tensor, std::move(buf)); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::recvAnysource( |
| std::vector<at::Tensor>& tensors, |
| int tag) { |
| auto& tensor = checkSingleTensor(tensors); |
| auto utag = checkTag(tag); |
| auto ptr = tensor.data_ptr(); |
| auto size = tensor.numel() * tensor.element_size(); |
| |
| // Construct unbound buffer. |
| auto context = getContext(tag); |
| auto buf = context->createUnboundBuffer(ptr, size); |
| |
| // Build list of ranks that this operation can recv from. In these |
| // bindings we don't differentiate between ranks and can receive |
| // from any other process in the group. |
| std::vector<int> srcRanks; |
| srcRanks.resize(size_); |
| for (auto i = 0; i < size_; i++) { |
| srcRanks.push_back(i); |
| } |
| |
| buf->recv(srcRanks, utag); |
| |
| // The work captures the tensor to prevent it being deallocated and |
| // the unbound buffer to synchronize on completion of the recv. |
| return std::make_shared<RecvWork>(tensor, std::move(buf)); |
| } |
| |
| namespace { |
| |
| class AsyncBarrierWork : public ProcessGroupGloo::AsyncWork { |
| public: |
| AsyncBarrierWork( |
| const std::shared_ptr<gloo::Context>& context, |
| std::vector<std::weak_ptr<AsyncWork>> priorWork, |
| uint32_t tag) |
| : context(context), priorWork(std::move(priorWork)), tag(tag) {} |
| |
| std::shared_ptr<gloo::Context> context; |
| std::vector<std::weak_ptr<AsyncWork>> priorWork; |
| const uint32_t tag; |
| |
| void run() override { |
| // Wait on prior work to complete |
| for (auto& weakWork : priorWork) { |
| auto work = weakWork.lock(); |
| if (work) { |
| work->wait(); |
| } |
| } |
| |
| gloo::BarrierOptions opts(context); |
| opts.setTag(tag); |
| gloo::barrier(opts); |
| } |
| }; |
| |
| } // namespace |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::barrier( |
| const BarrierOptions& opts) { |
| std::vector<std::weak_ptr<AsyncWork>> priorWork; |
| |
| // Snapshot all in progress and pending work as weak_ptr. |
| // When executing a barrier, we need to ensure that all prior work |
| // has completed before completing itself. |
| { |
| std::unique_lock<std::mutex> lock(workMutex_); |
| priorWork.insert( |
| priorWork.end(), workInProgress_.begin(), workInProgress_.end()); |
| priorWork.insert(priorWork.end(), workQueue_.begin(), workQueue_.end()); |
| } |
| |
| auto tag = nextTag(); |
| auto context = getContext(tag); |
| auto work = std::make_shared<AsyncBarrierWork>( |
| std::move(context), std::move(priorWork), tag); |
| enqueue(work); |
| return work; |
| } |
| |
| } // namespace c10d |