| #include "caffe2/operators/accuracy_op.h" |
| |
| namespace caffe2 { |
| |
| template <> |
| bool AccuracyOp<float, CPUContext>::RunOnDevice() { |
| auto& X = Input(PREDICTION); |
| auto& label = Input(LABEL); |
| |
| CAFFE_ENFORCE_EQ(X.dim(), 2); |
| int N = X.dim32(0); |
| int D = X.dim32(1); |
| CAFFE_ENFORCE_EQ(label.dim(), 1); |
| CAFFE_ENFORCE_EQ(label.dim32(0), N); |
| auto* Y = Output(0, vector<int64_t>(), at::dtype<float>()); |
| const auto* Xdata = X.data<float>(); |
| const auto* labelData = label.data<int>(); |
| const int top_k = top_k_; |
| int correct = 0; |
| |
| // it's equivalent to using a stable sorting algorithm to sort the |
| // classes (with their predictions as key) and then check whether |
| // the label is within the first top_k slots. |
| for (int i = 0; i < N; ++i) { |
| auto label_i = labelData[i]; |
| auto label_pred = Xdata[i * D + label_i]; |
| int ngt = 1; |
| for (int j = 0; j < D; ++j) { |
| auto pred = Xdata[i * D + j]; |
| if ((pred > label_pred) || (pred == label_pred && j < label_i)) { |
| if (++ngt > top_k) { |
| break; |
| } |
| } |
| } |
| if (ngt <= top_k) { |
| ++correct; |
| } |
| } |
| CAFFE_ENFORCE_LE(correct, N); |
| // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions) |
| *(Y->template mutable_data<float>()) = static_cast<float>(correct) / N; |
| |
| return true; |
| } |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) |
| REGISTER_CPU_OPERATOR(Accuracy, AccuracyOp<float, CPUContext>); |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) |
| OPERATOR_SCHEMA(Accuracy) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .ScalarType(TensorProto::FLOAT) |
| .SetDoc(R"DOC( |
| Accuracy takes two inputs- predictions and labels, and returns a float |
| accuracy value for the batch. Predictions are expected in the form of 2-D tensor |
| containing a batch of scores for various classes, and labels are expected in the |
| form of 1-D tensor containing true label indices of samples in the batch. If |
| the score for the label index in the predictions is the highest among all |
| classes, it is considered a correct prediction. |
| )DOC") |
| .Arg( |
| "top_k", |
| "Count as correct by comparing the true label to the top k scoring " |
| "classes (default 1: only compare to the top scoring class i.e. argmax)") |
| .Input( |
| 0, |
| "predictions", |
| "2-D tensor (Tensor<float>) of size " |
| "(num_batches x num_classes) containing scores") |
| .Input( |
| 1, |
| "labels", |
| "1-D tensor (Tensor<float>) of size (num_batches) having " |
| "the indices of true labels") |
| .Output( |
| 0, |
| "accuracy", |
| "1-D tensor (Tensor<float>) of size 1 containing " |
| "accuracy"); |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) |
| SHOULD_NOT_DO_GRADIENT(Accuracy); |
| } // namespace caffe2 |