| # Owner(s): ["module: inductor"] |
| |
| import functools |
| import unittest |
| |
| import torch |
| from torch._dynamo import config as dynamo_config |
| from torch._inductor import config as inductor_config |
| from torch._inductor.test_case import TestCase as InductorTestCase |
| from torch._inductor.utils import is_big_gpu |
| from torch.testing import make_tensor |
| from torch.testing._internal.common_device_type import instantiate_device_type_tests |
| from torch.testing._internal.common_utils import IS_LINUX, parametrize |
| from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CUDA, skipCUDAIf |
| |
| |
| class TestUnbackedSymints(InductorTestCase): |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_dynamic_output_shape_ops": True}) |
| def test_expand(self, device): |
| def fn(x, y): |
| nz = torch.nonzero(x) |
| # unbacked symint in nz.size |
| x_exp = nz.expand([-1, 128]) |
| # unbacked symint in target sizes |
| y_exp = y.expand([-1, nz.size(0)]) |
| return x_exp, y_exp |
| |
| example_inputs = ( |
| torch.randn((32), device=device), |
| torch.randn((32, 1), device=device), |
| ) |
| |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| |
| torch.testing.assert_close(actual, expected) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_dynamic_output_shape_ops": True}) |
| def test_expand_ok_with_runtime_assert(self, device): |
| def fn(x): |
| nz = x.nonzero() |
| torch._check(nz.size(0) == 128) |
| return nz.expand([128, -1, 2]) |
| |
| x = make_tensor(32, 4, device=device, dtype=torch.float32, exclude_zero=True) |
| actual = torch.compile(fn, fullgraph=True)(x) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_dynamic_output_shape_ops": True}) |
| def test_broadcast_tensors(self, device): |
| def fn(x): |
| nz = x.nonzero() |
| a = torch.zeros([nz.size(0), 512]) |
| b = torch.ones([nz.size(0), 1]) |
| return a * b |
| |
| x = torch.randn(32, 4, device=device) |
| actual = torch.compile(fn, fullgraph=True)(x) |
| expected = fn(x) |
| torch.testing.assert_close(actual, expected) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_dynamic_output_shape_ops": True}) |
| def test_autotuning(self, device): |
| def fn(x, y): |
| nz = torch.nonzero(x) |
| # unbacked symint in the GEMM input shape |
| a = x.new_ones([nz.size(0), y.size(0)]) |
| return a @ y |
| |
| example_inputs = ( |
| torch.randn((64), device=device), |
| torch.randn((32, 16), device=device), |
| ) |
| |
| with inductor_config.patch( |
| { |
| "max_autotune_gemm": True, |
| } |
| ): |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| |
| torch.testing.assert_close(actual, expected) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_scalar_outputs": True}) |
| def test_split_with_sizes(self, device): |
| def fn(x, y): |
| l = y.tolist() |
| s = torch.split(x, l) |
| d = l[0] + l[1] + l[2] |
| return s[0].sum(), d |
| |
| example_inputs = (torch.randn((32), device=device), torch.tensor((7, 16, 9))) |
| |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| |
| torch.testing.assert_close(actual, expected) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_dynamic_output_shape_ops": True}) |
| def test_view_of_slice(self, device): |
| # Tests View.create(slice, size_with_unbacked_symint) |
| def fn(x): |
| nz = torch.nonzero(x) # introduce unbacked symint |
| squared = nz * nz # avoid ReinterpretView when lowering Slice |
| sliced = torch.ops.aten.slice.Tensor(squared, dim=1, start=-2, end=None) |
| view = sliced.unsqueeze(dim=0) |
| return view.squeeze( |
| dim=0 |
| ) # make sure no unbacked symint in output's stride |
| |
| example_inputs = (torch.randn(1, 1, 1, 1, device=device),) |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| torch.testing.assert_close(actual, expected) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_scalar_outputs": True}) |
| @inductor_config.patch({"abi_compatible": True}) |
| def test_triton_kernel_grid(self, device): |
| if device == "cpu": |
| raise unittest.SkipTest("Triton kernel requires GPU") |
| |
| from torch.testing._internal.triton_utils import add_kernel |
| |
| def fn(x): |
| maxlen = max(x.item(), 512) |
| a = torch.ones(maxlen, device=device) |
| b = torch.ones(maxlen, device=device) |
| out = torch.zeros_like(a) |
| # unbacked symint in grid |
| add_kernel[(1, 1, maxlen)](a, b, out, maxlen, 32) |
| return out |
| |
| example_inputs = (torch.randint(high=1024, size=(1,), device=device),) |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| torch.testing.assert_close(actual, expected) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_dynamic_output_shape_ops": True}) |
| def test_nonzero_in_inference_mode(self, device): |
| def fn(x): |
| return torch.nonzero(x) |
| |
| example_inputs = (torch.randint(0, 2, (128,), device=device),) |
| |
| with torch.inference_mode(): |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| |
| torch.testing.assert_close(actual, expected) |
| |
| @inductor_config.patch({"max_autotune": True}) |
| @dynamo_config.patch({"capture_scalar_outputs": True}) |
| def test_equivalent_backed_unbacked(self, device): |
| # Tests scenario when there are two equivalent backed & unbacked symints, |
| # but when we look-up a size hint on the unbacked symint, we ignorantly |
| # use the default fallback hint. |
| |
| def fn(x, w, a, b): |
| # Make tensors where 1st dim is unbacked/backed. |
| u0, s0 = a.item(), b.size(0) |
| unbacked = x.expand(u0, *x.shape) |
| backed = x.expand(s0, *x.shape) |
| |
| # The cat unifies u0 and s0 -- i.e. u0 == s0. |
| cat = torch.cat([backed, unbacked, unbacked], dim=1) # [s0, 30, 16] |
| mat1 = torch.permute(cat, [0, 2, 1]) # [s0, 16, 30] |
| mat2 = w.expand(u0, *w.shape) # [u0, 30, 32] |
| bmm = torch.ops.aten.bmm(mat1, mat2) |
| return bmm |
| |
| example_inputs = ( |
| torch.randn((10, 16), dtype=torch.float32, device=device), |
| torch.randn((30, 32), dtype=torch.float32, device=device), |
| torch.tensor(7, device=device), |
| backed := torch.randn((7,), device=device), |
| ) |
| torch._dynamo.mark_dynamic(backed, 0) # create backed symint |
| |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| torch.testing.assert_close(actual, expected) |
| |
| @skipCUDAIf(not HAS_CUDA, "requires cuda") |
| @dynamo_config.patch({"capture_scalar_outputs": True}) |
| def test_vertical_pointwise_reduction_fusion(self, device): |
| # Tests fusing a pointwise & reduction op with unbacked numel/rnumel. |
| def fn(x, y, repeats): |
| u0 = repeats.item() |
| unbacked = y.expand(u0, *y.shape) # [u0, 1, 16] |
| |
| # Note: We add x to both pointwise and reduction. Otherwise, the |
| # scheduler will refuse to fuse ops whose only common buffer has |
| # unbacked symints. |
| pointwise = unbacked + x |
| reduction = torch.sum(pointwise + x) |
| return pointwise, reduction |
| |
| example_inputs = ( |
| torch.randn(32, 16).cuda(), |
| torch.randn(1, 16).cuda(), |
| torch.tensor(32).cuda(), |
| ) |
| |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| torch.testing.assert_close(actual, expected) |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @dynamo_config.patch({"capture_scalar_outputs": True}) |
| @parametrize( |
| "torch_fn", [torch.mm, torch.bmm, torch.addmm], name_fn=lambda fn: fn.__name__ |
| ) |
| @parametrize("coordinate_descent_tuning", [True, False], name_fn=str) |
| def test_mm_and_friends(self, device, torch_fn, coordinate_descent_tuning): |
| if torch_fn == torch.addmm: |
| torch_fn = functools.partial(torch_fn, torch.ones(1, device=device)) |
| |
| def fn(x, w, repeats, is_bmm): |
| u0 = repeats.item() |
| torch._check_is_size(u0) |
| |
| x_unbacked = x.expand(u0, 32) |
| w_unbacked = w.expand(32, u0) |
| if is_bmm: |
| # Make sure inputs are batched. |
| x_unbacked = x_unbacked.expand(10, *x_unbacked.shape) |
| w_unbacked = w_unbacked.expand(10, *w_unbacked.shape) |
| |
| return torch_fn(x_unbacked, w_unbacked) |
| |
| example_inputs = ( |
| torch.randn(1, 32, device=device), |
| torch.randn(32, 1, device=device), |
| torch.tensor(100, device=device), |
| torch_fn == torch.bmm, |
| ) |
| with inductor_config.patch( |
| { |
| # coordinate_descent_tuning has its own path during decomp |
| "coordinate_descent_tuning": coordinate_descent_tuning, |
| } |
| ): |
| actual = torch.compile(fn, fullgraph=True)(*example_inputs) |
| expected = fn(*example_inputs) |
| torch.testing.assert_close(actual, expected) |
| |
| |
| instantiate_device_type_tests( |
| TestUnbackedSymints, globals(), only_for=(GPU_TYPE, "cpu") |
| ) |
| |
| if __name__ == "__main__": |
| from torch._inductor.test_case import run_tests |
| |
| if IS_LINUX and HAS_CUDA and is_big_gpu(0): |
| run_tests() |