blob: c17d78f628a371705c1b2831bfc4e97b69559fef [file] [log] [blame]
# Owner(s): ["module: inductor"]
import functools
import itertools
import math
import torch
import torch._inductor.config
import torch.utils.checkpoint
from torch._dynamo.debug_utils import aot_graph_input_parser
from torch._dynamo.utils import counters
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import run_and_get_code
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FUSED_ATTENTION,
SM80OrLater,
)
from torch.testing._internal.common_utils import IS_LINUX, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
def checkpoint_wrapper(fn):
def inner(*args):
return torch.utils.checkpoint.checkpoint(fn, *args, use_reentrant=True)
return inner
class TestSDPAPatternRewriterTemplate(TestCase):
use_static_shapes = True
def _clone_inputs(self, inputs):
def clone(x):
if not isinstance(x, torch.Tensor):
return x
return x.clone()
return [clone(x) for x in inputs]
def _check_common(
self,
dot_prod_attention,
args1=None,
contains=True,
atol=1e-5,
has_fuse_pattern=True,
has_dropout=False,
check_train=True,
override_check_equal=False,
dtype=torch.float,
rtol=1.3e-6,
):
if args1 is None:
tensor_shape = (4, 2, 16, 32)
args1 = [
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
]
else:
args1 = list(args1)
args2 = self._clone_inputs(args1)
for training in [False, True] if check_train else [False]:
for x in itertools.chain(args1[:], args2[:]):
if isinstance(x, torch.Tensor) and x.is_floating_point():
x.requires_grad = training
if not self.use_static_shapes:
torch._dynamo.mark_dynamic(args2[0], 0)
torch._dynamo.mark_dynamic(args2[1], 0)
torch._dynamo.mark_dynamic(args2[2], 0)
dropout_arg = [training] if has_dropout else []
torch.manual_seed(1234)
result1 = dot_prod_attention(*(args1 + dropout_arg))
counters.clear()
torch.manual_seed(1234)
result2, source_code = run_and_get_code(
torch.compile(dot_prod_attention, fullgraph=True),
*(args2 + dropout_arg),
)
source_code = "\n".join(source_code)
if has_fuse_pattern:
self.assertGreaterEqual(counters["inductor"]["fuse_attention"], 1)
if contains:
# many of the patterns get re-expanded in dispatcher
self.assertIn(
"aten._scaled_dot_product",
source_code,
)
# some tests configured with very low dropout where we still want to check equality
if not has_dropout or override_check_equal:
self.assertEqual(result1, result2, atol=atol, rtol=1.3e-6)
if training:
result1.sum().backward()
result2.sum().backward()
for arg1, arg2 in zip(args1, args2):
if (
isinstance(arg1, torch.Tensor)
and arg1.is_floating_point()
and (not has_dropout or override_check_equal)
):
self.assertEqual(arg1.grad, arg2.grad, atol=atol, rtol=rtol)
@skipIfRocm
def _test_sdpa_rewriter_1(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, n_head, seq_len, embed_dim)"""
return (
torch.matmul(query, key.transpose(-2, -1))
.div(math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.matmul(value)
)
for dtype in [torch.float, torch.half]:
atol = 0.001
rtol = 1.3e-6 if dtype == torch.float else 0.7
if self.device == "cpu" and dtype == torch.half:
atol = 2e-3
rtol = 1e-2
self._check_common(dot_prod_attention, dtype=dtype, atol=atol, rtol=rtol)
self._check_common(
checkpoint_wrapper(dot_prod_attention),
dtype=dtype,
atol=atol,
rtol=rtol,
)
@skipIfRocm
@torch._inductor.config.patch("freezing", True)
def _test_sdpa_rewriter_1_freezing(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, n_head, seq_len, embed_dim)"""
return (
torch.matmul(query, key.transpose(-2, -1))
.div(math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.matmul(value)
)
for dtype in [torch.float, torch.half]:
atol = 0.001
rtol = 1.3e-6 if dtype == torch.float else 0.7
if self.device == "cpu" and dtype == torch.half:
atol = 2e-3
rtol = 1e-2
with torch.no_grad():
self._check_common(
dot_prod_attention,
dtype=dtype,
atol=atol,
rtol=rtol,
check_train=False,
)
@skipIfRocm
def _test_insignificant_strides(self):
f32 = torch.float32
# repro taken from https://github.com/pytorch/pytorch/issues/124289
# constant_pad_nd is a single element tensor that gets expanded
def forward(
permute_3: "f32[1, 32, 1, 128]",
permute_4: "f32[1, 32, 1, 128]",
permute_5: "f32[1, 32, 1, 128]",
permute_6: "f32[1, 1, 64]",
mul_2: "f32[1, 1, 1, 1]",
):
cat = torch.ops.aten.cat.default([permute_6, permute_6], 2)
permute_6 = None
cos = torch.ops.aten.cos.default(cat)
sin = torch.ops.aten.sin.default(cat)
unsqueeze_10 = torch.ops.aten.unsqueeze.default(cos, 1)
cos = None
unsqueeze_11 = torch.ops.aten.unsqueeze.default(sin, 1)
sin = None
mul_5 = torch.ops.aten.mul.Tensor(permute_3, unsqueeze_10)
slice_10 = torch.ops.aten.slice.Tensor(permute_3, 3, 0, 64)
slice_11 = torch.ops.aten.slice.Tensor(
permute_3, 3, 64, 9223372036854775807
)
permute_3 = None
neg = torch.ops.aten.neg.default(slice_11)
slice_11 = None
cat_1 = torch.ops.aten.cat.default([neg, slice_10], 3)
neg = slice_10 = None
mul_6 = torch.ops.aten.mul.Tensor(cat_1, unsqueeze_11)
cat_1 = None
add_1 = torch.ops.aten.add.Tensor(mul_5, mul_6)
mul_5 = mul_6 = None
mul_7 = torch.ops.aten.mul.Tensor(permute_4, unsqueeze_10)
unsqueeze_10 = None
slice_12 = torch.ops.aten.slice.Tensor(permute_4, 3, 0, 64)
slice_13 = torch.ops.aten.slice.Tensor(
permute_4, 3, 64, 9223372036854775807
)
permute_4 = None
neg_1 = torch.ops.aten.neg.default(slice_13)
slice_13 = None
cat_2 = torch.ops.aten.cat.default([neg_1, slice_12], 3)
neg_1 = slice_12 = None
mul_8 = torch.ops.aten.mul.Tensor(cat_2, unsqueeze_11)
cat_2 = unsqueeze_11 = None
add_2 = torch.ops.aten.add.Tensor(mul_7, mul_8)
mul_7 = mul_8 = None
slice_14 = torch.ops.aten.slice.Tensor(mul_2, 0, 0, 9223372036854775807)
mul_2 = None
slice_15 = torch.ops.aten.slice.Tensor(slice_14, 1, 0, 9223372036854775807)
slice_14 = None
slice_16 = torch.ops.aten.slice.Tensor(slice_15, 2, 0, 9223372036854775807)
slice_15 = None
constant_pad_nd = torch.ops.aten.constant_pad_nd.default(
slice_16, [0, 7], 0.0
)
slice_16 = None
slice_17 = torch.ops.aten.slice.Tensor(constant_pad_nd, -1, 0, 1)
constant_pad_nd = None
expand_5 = torch.ops.aten.expand.default(slice_17, [1, 32, 1, 1])
_scaled_dot_product_efficient_attention = (
torch.ops.aten._scaled_dot_product_efficient_attention.default(
add_1, add_2, permute_5, expand_5, True
)
)
return _scaled_dot_product_efficient_attention
kwargs = aot_graph_input_parser(forward, device="cuda")
# runs successfully
out_eager = forward(**kwargs)
out_c = torch.compile(forward)(**kwargs)
# dont compare philox_seed/offset
torch.testing.assert_close(out_eager[0:2], out_c[0:2])
def _test_pattern_fails_with_reuse(self):
"""
This test checks that the replacement is not done
when an intermediate result is being used / returned downstream
"""
@torch.compile(fullgraph=True)
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
attn_weights = (
torch.matmul(query, key.transpose(-2, -1))
.div(math.sqrt(key.shape[-1]))
.softmax(dim=-1)
)
return attn_weights.matmul(value), attn_weights
tensor_shape = (2, 4, 8, 16)
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
]
_, (source_code,) = run_and_get_code(dot_prod_attention, *args)
self.assertNotIn("aten._scaled_dot_product_efficient_attention", source_code)
@skipIfRocm
def _test_sdpa_rewriter_2(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
return (
torch.matmul(query, key.transpose(-2, -1))
.mul(1.0 / math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.matmul(value)
)
self._check_common(dot_prod_attention)
self._check_common(checkpoint_wrapper(dot_prod_attention))
@skipIfRocm # AssertionError: expected size 4==4, stride 32==64 at dim=0
def _test_sdpa_rewriter_3(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, training: bool
) -> torch.Tensor:
return torch.nn.functional.dropout(
torch.matmul(query, key.transpose(-2, -1)).div(3.0).softmax(dim=-1),
p=0.4,
training=training,
inplace=False,
).matmul(value)
self._check_common(dot_prod_attention, contains=False, has_dropout=True)
self._check_common(
checkpoint_wrapper(dot_prod_attention), contains=False, has_dropout=True
)
@skipIfRocm # AssertionError: expected size 4==4, stride 32==64 at dim=0
def _test_sdpa_rewriter_4(self):
def dot_prod_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
training: bool,
) -> torch.Tensor:
return torch.nn.functional.dropout(
torch.matmul(query, key.transpose(-2, -1)).mul(0.4).softmax(dim=-1),
p=0.2,
inplace=False,
training=training,
).matmul(value)
self._check_common(dot_prod_attention, contains=False, has_dropout=True)
self._check_common(
checkpoint_wrapper(dot_prod_attention), contains=False, has_dropout=True
)
def _test_sdpa_rewriter_5(self):
def sfdp_pattern_5_v1(query, key, value):
attn_mask = torch.ones(
query.size(-2), key.size(-2), dtype=torch.bool, device=query.device
).tril(diagonal=0)
attn_mask = attn_mask.masked_fill(
torch.logical_not(attn_mask), -float("inf")
)
attn_weight = torch.softmax(
(query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))) + attn_mask,
dim=-1,
)
return attn_weight @ value
def sfdp_pattern_5_v2(query, key, value):
# https://github.com/pytorch/pytorch/issues/100318.
attn_mask = torch.zeros(
query.size(-2), key.size(-2), dtype=torch.bool, device=query.device
).bool()
attn_weight = torch.softmax(
(query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))) + attn_mask,
dim=-1,
)
return attn_weight @ value
self._check_common(sfdp_pattern_5_v1, contains=False)
self._check_common(checkpoint_wrapper(sfdp_pattern_5_v1), contains=False)
self._check_common(sfdp_pattern_5_v2, contains=False)
self._check_common(checkpoint_wrapper(sfdp_pattern_5_v2), contains=False)
@skipIfRocm
def _test_sdpa_rewriter_6(self):
def sfdp_pattern_6(query, key, value, training):
attn_mask = torch.ones(
query.size(-2), key.size(-2), dtype=torch.bool, device=query.device
).tril(diagonal=0)
attn_mask = attn_mask.masked_fill(
torch.logical_not(attn_mask), -float("inf")
)
attn_weight = torch.softmax(
(query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))) + attn_mask,
dim=-1,
)
attn_weight = torch.nn.functional.dropout(attn_weight, 0.5, training)
return attn_weight @ value
self._check_common(sfdp_pattern_6, contains=False, has_dropout=True)
self._check_common(
checkpoint_wrapper(sfdp_pattern_6), contains=False, has_dropout=True
)
@skipIfRocm
def _test_sdpa_rewriter_7(self):
def sfdp_pattern_7(query, key, value, training):
q = query.permute(0, 2, 1, 3)
k = key.permute(0, 2, 1, 3)
v = value.permute(0, 2, 1, 3)
div = q @ k.transpose(-2, -1) / math.sqrt(q.size(-1))
div = div.to(torch.float32)
attn_weight = torch.softmax(div, dim=-1)
# Set to False
attn_weight = torch.dropout(attn_weight, 0.00000000001, training)
attn_weight = attn_weight.to(torch.float16)
return attn_weight @ v
args = (
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
)
self._check_common(
sfdp_pattern_7,
args,
contains=SM80OrLater,
has_dropout=True,
override_check_equal=True,
atol=2e-3,
)
args = (
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
)
self._check_common(
checkpoint_wrapper(sfdp_pattern_7),
args,
contains=SM80OrLater,
has_dropout=True,
override_check_equal=True,
atol=2e-3,
)
@skipIfRocm
def _test_sdpa_rewriter_8(self):
def sfdp_pattern_8(query, key, value):
q = query.permute(0, 2, 1, 3)
k = key.permute(0, 2, 1, 3)
v = value.permute(0, 2, 1, 3)
div = q @ k.transpose(-2, -1) / math.sqrt(q.size(-1))
div = div.to(torch.float32)
attn_weight = torch.softmax(div, dim=-1)
attn_weight = attn_weight.to(torch.float16)
return attn_weight @ v
args = (
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
)
self._check_common(sfdp_pattern_8, args, atol=2e-3)
args = (
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
)
self._check_common(checkpoint_wrapper(sfdp_pattern_8), args, atol=2e-3)
@skipIfRocm
def _test_sdpa_rewriter_9(self):
def sfdp_pattern_9(query, key, value, training):
q = query.permute(0, 2, 1, 3)
k = key.permute(0, 2, 1, 3)
v = value.permute(0, 2, 1, 3)
q = q / math.sqrt(q.size(-1))
div = q @ k.transpose(-2, -1)
div = div.to(torch.float32)
attn_weight = torch.softmax(div, dim=-1)
# very low dropout to make test pass
attn_weight = torch.dropout(attn_weight, 0.00000000001, training)
attn_weight = attn_weight.to(torch.float16)
return attn_weight @ v
args = (
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
)
self._check_common(
sfdp_pattern_9,
args,
contains=SM80OrLater,
has_dropout=True,
override_check_equal=True,
atol=2e-3,
)
args = (
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
)
self._check_common(
checkpoint_wrapper(sfdp_pattern_9),
args,
contains=SM80OrLater,
has_dropout=True,
override_check_equal=True,
atol=2e-3,
)
@skipIfRocm
def _test_sdpa_rewriter_10(self):
def sfdp_pattern_10(query, key, value):
q = query.permute(0, 2, 1, 3)
k = key.permute(0, 2, 1, 3)
v = value.permute(0, 2, 1, 3)
q = q / math.sqrt(q.size(-1))
div = q @ k.transpose(-2, -1)
div = div.to(torch.float32)
attn_weight = torch.softmax(div, dim=-1)
attn_weight = attn_weight.to(torch.float16)
return attn_weight @ v
args = (
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
torch.randn((2, 8, 4, 16), device=self.device, dtype=torch.half),
)
self._check_common(sfdp_pattern_10, args, atol=2e-3)
args = (
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
torch.randn((2, 8, 4, 16), device="cuda", dtype=torch.half),
)
self._check_common(checkpoint_wrapper(sfdp_pattern_10), args, atol=2e-3)
def _test_pattern_fails_with_tensor_factor(self):
# https://github.com/pytorch/pytorch/issues/99124
class Model(torch.nn.Module):
def __init__(self, is_inv_factor):
super().__init__()
self.is_inv_factor = is_inv_factor
def forward(self, query, key, value, scale_factor) -> torch.Tensor:
# Dividing by scale_factor makes scale_factor gradients very
# unstable
scale_factor = scale_factor.detach()
y = torch.matmul(query, key.transpose(-2, -1))
if self.is_inv_factor:
y = y.div(scale_factor)
else:
y = y.mul(scale_factor)
return y.softmax(dim=-1).matmul(value)
tensor_shape = (2, 4, 4, 4)
for is_inv_factor in [True, False]:
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn((4, 1, 1), device=self.device),
]
model = Model(is_inv_factor).eval()
# The training path has an accuracy gap compared with eager mode.
self._check_common(
model, args1=args, contains=False, atol=1e-3, has_fuse_pattern=False
)
def _test_pattern_fails_with_unsupported_mask(self):
if not self.use_static_shapes:
self.skipTest("Causes shape specialization. TODO: investigate")
# https://github.com/pytorch/pytorch/issues/100315
class Model(torch.nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, query, key, value, attn_mask) -> torch.Tensor:
attn_weight = torch.softmax(
query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
+ attn_mask,
dim=-1,
)
return attn_weight @ value
tensor_shape = (2, 4, 4, 4)
upsupported_masks = [
torch.randn((2, 4, 4, 4), device=self.device).to(dtype=torch.int),
2.0,
]
for atte_mask in upsupported_masks:
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
atte_mask,
]
model = Model().eval()
# The training path has an accuracy gap compared with eager mode.
self._check_common(
model, args1=args, contains=False, atol=1e-4, has_fuse_pattern=False
)
@skipIfRocm
def _test_sdpa_rewriter_11(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
q = query.transpose(1, 2)
k = key.transpose(1, 2)
v = value.transpose(1, 2)
return (
torch.matmul(q, k.transpose(-2, -1))
.div(math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.matmul(v)
)
self._check_common(dot_prod_attention)
def _test_sdpa_rewriter_12(self):
def dot_prod_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
training: bool,
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
q = query.transpose(1, 2)
k = key.transpose(1, 2)
v = value.transpose(1, 2)
return torch.nn.functional.dropout(
torch.matmul(q, k.transpose(-2, -1))
.div(math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.matmul(v),
p=0.4,
training=training,
inplace=False,
)
self._check_common(dot_prod_attention, contains=False, has_dropout=True)
@skipIfRocm
def _test_sdpa_prev_13(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, n_head, seq_len, embed_dim)"""
return (
torch.matmul(query, key.transpose(-2, -1))
.div(math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.clone()
.matmul(value)
)
self._check_common(dot_prod_attention, check_train=False)
self._check_common(checkpoint_wrapper(dot_prod_attention), check_train=False)
@skipIfRocm
def _test_sdpa_prev_14(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
return (
torch.matmul(query, key.transpose(-2, -1))
.mul(1.0 / math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.clone()
.matmul(value)
)
self._check_common(dot_prod_attention, check_train=False)
self._check_common(checkpoint_wrapper(dot_prod_attention), check_train=False)
@skipIfRocm
def _test_sdpa_prev_15(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
q = query.transpose(1, 2)
k = key.transpose(1, 2)
v = value.transpose(1, 2)
return (
torch.matmul(q, k.transpose(-2, -1))
.div(math.sqrt(key.shape[-1]))
.softmax(dim=-1)
.clone()
.matmul(v)
)
self._check_common(dot_prod_attention, check_train=False)
@skipIfRocm
def _test_sdpa_rewriter_13(self, dtype):
def dot_prod_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
training: bool,
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
attn_weight = torch.bmm(query, key.transpose(1, 2)).softmax(dim=-1)
attn_weight = torch.nn.functional.dropout(
attn_weight, p=0.5, training=training
)
return torch.bmm(attn_weight, value)
tensor_shape = (4, 8, 16)
args = [
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
]
self._check_common(
dot_prod_attention,
check_train=False,
args1=args,
has_dropout=True,
override_check_equal=True,
atol=1e-2,
rtol=1e-2,
)
@skipIfRocm
def _test_sdpa_rewriter_14(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
attn_mask = torch.ones(
query.size(1), key.size(1), dtype=torch.bool, device=query.device
).tril(diagonal=0)
attn_mask = attn_mask.masked_fill(
torch.logical_not(attn_mask), -float("inf")
)
q = query.permute(0, 2, 1, 3)
k = key.permute(0, 2, 1, 3)
v = value.permute(0, 2, 1, 3)
return (
(torch.matmul(q, k.transpose(-2, -1)).div(3.0) + attn_mask)
.softmax(dim=-1)
.matmul(v)
)
self._check_common(dot_prod_attention)
@skipIfRocm
def _test_sdpa_rewriter_15(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
q = query.transpose(1, 2)
k = key.transpose(1, 2)
v = value.transpose(1, 2)
bs = q.size(0)
k_len = k.size(-2)
attn_mask = torch.ones(
bs, k_len, dtype=torch.bool, device=query.device
).tril(diagonal=0)
scores = torch.matmul(q, k.transpose(-2, -1)) / 3.0
attn_mask = (attn_mask == 0).view((bs, 1, 1, k_len)).expand_as(scores)
scores = scores.masked_fill(attn_mask, -float("inf"))
weights = torch.nn.functional.softmax(scores, dim=-1)
return torch.matmul(weights, v)
self._check_common(dot_prod_attention, check_train=False)
@skipIfRocm
def _test_sdpa_rewriter_16(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, training
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
attn_mask = torch.ones(
query.size(1), key.size(1), dtype=torch.bool, device=query.device
).tril(diagonal=0)
attn_mask = attn_mask.masked_fill(
torch.logical_not(attn_mask), -float("inf")
)
q = query.permute(0, 2, 1, 3)
k = key.permute(0, 2, 1, 3)
v = value.permute(0, 2, 1, 3)
return torch.nn.functional.dropout(
(torch.matmul(q, k.transpose(-2, -1)).div(3.0) + attn_mask).softmax(
dim=-1
),
p=0.4,
training=training,
inplace=False,
).matmul(v)
self._check_common(dot_prod_attention, contains=False, has_dropout=True)
# also check batch_size=1 because the graph is slightly different
tensor_shape = (1, 2, 16, 32)
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
]
self._check_common(
dot_prod_attention, args1=args, contains=False, has_dropout=True
)
@skipIfRocm
def _test_sdpa_rewriter_16_fp32_mask(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, training
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
attn_mask = torch.randn(
query.size(1), key.size(1), dtype=torch.float, device=query.device
).tril(diagonal=0)
q = query.permute(0, 2, 1, 3)
k = key.permute(0, 2, 1, 3)
v = value.permute(0, 2, 1, 3)
return torch.nn.functional.dropout(
(torch.matmul(q, k.transpose(-2, -1)).div(3.0) + attn_mask).softmax(
dim=-1
),
p=0.4,
training=training,
inplace=False,
).matmul(v)
self._check_common(dot_prod_attention, contains=False, has_dropout=True)
# also check batch_size=1 because the graph is slightly different
tensor_shape = (1, 2, 16, 32)
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
]
self._check_common(
dot_prod_attention, args1=args, contains=False, has_dropout=True
)
@skipIfRocm
def _test_sdpa_rewriter_17(self):
def dot_prod_attention(
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, training
) -> torch.Tensor:
"""Input tensors assumed to have shape (batch_size, seq_len, n_head, embed_dim)"""
q = query.transpose(1, 2)
k = key.transpose(1, 2)
v = value.transpose(1, 2)
bs = q.size(0)
k_len = k.size(-2)
attn_mask = torch.ones(
bs, k_len, dtype=torch.bool, device=query.device
).tril(diagonal=0)
scores = torch.matmul(q, k.transpose(-2, -1)) / 3.0
attn_mask = (attn_mask == 0).view((bs, 1, 1, k_len)).expand_as(scores)
scores = scores.masked_fill(attn_mask, -float("inf"))
weights = torch.nn.functional.softmax(scores, dim=-1)
weights = torch.nn.functional.dropout(
weights,
p=0.4,
training=training,
inplace=False,
)
return torch.matmul(weights, v)
self._check_common(dot_prod_attention, check_train=False, has_dropout=True)
@skipIfRocm
def _test_sdpa_rewriter_18(self):
def dot_prod_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
causal_mask: torch.Tensor,
) -> torch.Tensor:
# for hf_GPT2 with dropout
query = query.permute([0, 2, 1, 3])
key = key.permute([0, 2, 1, 3])
value = value.permute([0, 2, 1, 3])
attn_weights = torch.matmul(query, key.permute(0, 1, 3, 2))
inv_scale = torch.full(
(), math.sqrt(value.size(-1)), dtype=query.dtype, device=query.device
)
attn_weights = attn_weights.div(inv_scale)
causal_mask_value = torch.full(
(), torch.finfo(query.dtype).min, dtype=query.dtype, device=query.device
)
attn_weights = torch.where(causal_mask, attn_weights, causal_mask_value)
return (
(
torch.nn.functional.dropout(
attn_weights.softmax(dim=-1), 0.0
).matmul(value)
),
key.permute([0, 2, 1, 3]),
value.permute([0, 2, 1, 3]),
)
tensor_shape = (4, 2, 16, 32)
causal_mask = torch.ones(2, 2, dtype=torch.bool, device=self.device).tril(
diagonal=0
)
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
causal_mask,
]
self._check_common(
dot_prod_attention,
args1=args,
contains=False,
has_dropout=False,
check_train=False,
)
# also check batch_size=1 because the graph is slightly different
tensor_shape = (1, 2, 16, 32)
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
causal_mask,
]
self._check_common(
dot_prod_attention,
args1=args,
contains=False,
has_dropout=False,
check_train=False,
)
@skipIfRocm
def _test_sdpa_rewriter_19(self):
def dot_prod_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
causal_mask: torch.Tensor,
attn_mask: torch.Tensor,
training,
) -> torch.Tensor:
attn_weights = torch.matmul(query, key.permute(0, 1, 3, 2))
inv_scale = torch.full(
(),
math.sqrt(value.size(-1)),
dtype=attn_weights.dtype,
device=attn_weights.device,
)
attn_weights = attn_weights.div(inv_scale)
causal_mask_value = torch.full(
(), torch.finfo(query.dtype).min, dtype=query.dtype, device=query.device
)
attn_weights = torch.where(causal_mask, attn_weights, causal_mask_value)
attn_weights = attn_weights + attn_mask
attn_weights = attn_weights.softmax(dim=-1).type(value.dtype)
return torch.nn.functional.dropout(
attn_weights,
p=0.4,
training=training,
inplace=False,
).matmul(value)
tensor_shape = (4, 2, 16, 32)
causal_mask = torch.ones(16, 16, dtype=torch.bool, device=self.device).tril(
diagonal=0
)
attn_mask = torch.randn((16, 16), dtype=torch.float, device=self.device)
args = [
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
torch.randn(tensor_shape, device=self.device),
causal_mask,
attn_mask,
]
self._check_common(
dot_prod_attention,
args1=args,
contains=False,
has_dropout=True,
check_train=False,
)
if HAS_CUDA and PLATFORM_SUPPORTS_FUSED_ATTENTION:
class SDPAPatternRewriterCudaTests(TestSDPAPatternRewriterTemplate):
device = "cuda"
test_sdpa_rewriter_1_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_1
)
test_sdpa_rewriter_1_freezing = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_1_freezing
)
test_insignificant_strides = (
TestSDPAPatternRewriterTemplate._test_insignificant_strides
)
test_pattern_fails_with_reuse_cuda = (
TestSDPAPatternRewriterTemplate._test_pattern_fails_with_reuse
)
test_sdpa_rewriter_2_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_2
)
test_sdpa_rewriter_3_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_3
)
test_sdpa_rewriter_4_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_4
)
test_sdpa_rewriter_5_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_5
)
test_sdpa_rewriter_6_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_6
)
test_sdpa_rewriter_7_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_7
)
test_sdpa_rewriter_8_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_8
)
test_sdpa_rewriter_9_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_9
)
test_sdpa_rewriter_10_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_10
)
test_pattern_fails_with_tensor_factor_cuda = (
TestSDPAPatternRewriterTemplate._test_pattern_fails_with_tensor_factor
)
test_pattern_fails_with_unsupported_mask_cuda = (
TestSDPAPatternRewriterTemplate._test_pattern_fails_with_unsupported_mask
)
test_sdpa_rewriter_11_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_11
)
test_sdpa_rewriter_12_cuda = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_12
)
test_sdpa_prev_13_cuda = TestSDPAPatternRewriterTemplate._test_sdpa_prev_13
test_sdpa_prev_14_cuda = TestSDPAPatternRewriterTemplate._test_sdpa_prev_14
test_sdpa_prev_15_cuda = TestSDPAPatternRewriterTemplate._test_sdpa_prev_15
test_sdpa_rewriter_13_cuda = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_13, dtype=torch.half
)
test_sdpa_rewriter_14_cuda = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_14
)
test_sdpa_rewriter_15_cuda = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_15
)
test_sdpa_rewriter_17_cuda = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_17
)
test_sdpa_rewriter_19_cuda = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_19
)
class SDPAPatternRewriterCudaDynamicTests(SDPAPatternRewriterCudaTests):
use_static_shapes = False
if HAS_CPU:
class SDPAPatternRewriterCpuTests(TestSDPAPatternRewriterTemplate):
device = "cpu"
test_sdpa_rewriter_1_cpu = TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_1
test_pattern_fails_with_reuse_cpu = (
TestSDPAPatternRewriterTemplate._test_pattern_fails_with_reuse
)
test_sdpa_rewriter_2_cpu = TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_2
test_sdpa_rewriter_5_cpu = TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_5
test_pattern_fails_with_tensor_factor_cpu = (
TestSDPAPatternRewriterTemplate._test_pattern_fails_with_tensor_factor
)
test_pattern_fails_with_unsupported_mask_cpu = (
TestSDPAPatternRewriterTemplate._test_pattern_fails_with_unsupported_mask
)
test_sdpa_rewriter_11_cpu = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_11
)
test_sdpa_rewriter_12_cpu = (
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_12
)
test_sdpa_prev_13_cpu = TestSDPAPatternRewriterTemplate._test_sdpa_prev_13
test_sdpa_prev_14_cpu = TestSDPAPatternRewriterTemplate._test_sdpa_prev_14
test_sdpa_prev_15_cpu = TestSDPAPatternRewriterTemplate._test_sdpa_prev_15
test_sdpa_rewriter_13_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_13, dtype=torch.float32
)
test_sdpa_rewriter_14_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_14
)
test_sdpa_rewriter_15_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_15
)
test_sdpa_rewriter_16_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_16
)
test_sdpa_rewriter_16_fp32_mask_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_16_fp32_mask
)
test_sdpa_rewriter_17_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_17
)
test_sdpa_rewriter_18_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_18
)
test_sdpa_rewriter_19_cpu = functools.partialmethod(
TestSDPAPatternRewriterTemplate._test_sdpa_rewriter_19
)
class SDPAPatternRewriterCpuDynamicTests(SDPAPatternRewriterCpuTests):
use_static_shapes = False
if __name__ == "__main__":
if IS_LINUX:
run_tests()