blob: 0f22e6bc0eaaecff1eea28401fa0a42763c7c281 [file] [log] [blame]
# Owner(s): ["module: inductor"]
import base64
import functools
import json
import os
import pickle
import unittest
from typing import List
from unittest import mock
import torch
from torch._dynamo import reset
from torch._dynamo.utils import counters
from torch._inductor import config, metrics
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.codecache import (
cuda_compile_command,
CUDACodeCache,
FxGraphCachePickler,
FxGraphHashDetails,
PyCodeCache,
TensorMetadata,
TensorMetadataAndValues,
)
from torch._inductor.runtime.runtime_utils import cache_dir
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import clear_inductor_caches, fresh_inductor_cache
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
)
from torch.testing._internal.inductor_utils import (
GPU_TYPE,
HAS_CUDA,
HAS_GPU,
HAS_MULTIGPU,
requires_gpu,
)
from torch.utils._triton import has_triton
HAS_TRITON = has_triton()
if HAS_TRITON:
import triton
from torch.testing._internal.triton_utils import add_kernel
requires_triton = functools.partial(unittest.skipIf, not HAS_TRITON, "requires triton")
torch._dynamo.config.fake_tensor_cache_enabled = True
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled = True
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 10)
def forward(self, inp):
return self.fc1(inp)
def _run_codecache_test(start_method):
with torch._inductor.config.patch(
worker_start_method=start_method, compile_threads=16
):
AsyncCompile.warm_pool()
model = MyModel().to(device=GPU_TYPE)
model = torch.compile(model)
inp = torch.rand(10, 10).to(device=GPU_TYPE)
model(inp).sum().backward()
@requires_gpu()
def test_codecache_spawn():
_run_codecache_test("spawn")
@requires_gpu()
def test_codecache_fork():
_run_codecache_test("fork")
class MyModelConv2d(torch.nn.Module):
def __init__(self, dim=512):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, dim, kernel_size=3, stride=2, bias=False)
self.conv2 = torch.nn.Conv2d(dim, dim, kernel_size=3, stride=2, bias=False)
def forward(self, x):
x = self.conv1(x)
torch._dynamo.graph_break()
x = self.conv2(x)
return x
@instantiate_parametrized_tests
class TestFxGraphCache(TestCase):
def setUp(self):
super().setUp()
counters.clear()
def reset(self):
torch._dynamo.reset()
clear_inductor_caches()
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.bfloat16))
@parametrize("dynamic", (False, True))
def test_cache_load_function(self, device, dtype, dynamic):
"""
Verify that we can populate and load functions from the cache.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25, dtype=dtype, device=device)
b = torch.rand(5, 5, dtype=dtype, device=device)
compiled_fn = torch.compile(fn, dynamic=dynamic)
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
for m in torch._inductor.codecache.PyCodeCache.cache.values():
os.remove(m.__file__)
self.reset()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 1)
@requires_triton()
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.bfloat16))
@parametrize("dynamic", (False, True))
def test_remote_cache_load_function(self, device, dtype, dynamic):
from unittest.mock import patch
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25, dtype=dtype, device=device)
b = torch.rand(5, 5, dtype=dtype, device=device)
cache = {}
num_get = 0
num_put = 0
class MyCache:
def __init__(self, key, is_autotune=False):
pass
def get(self, filename):
nonlocal cache
nonlocal num_get
if filename not in cache:
return None
ret = json.loads(cache[filename])
num_get += 1
if config.is_fbcode():
return base64.b64decode(ret["data"]) if ret is not None else ret
else:
return base64.b64decode(ret) if ret is not None else ret
def put(self, filename, data):
nonlocal cache
nonlocal num_put
if config.is_fbcode():
data["data"] = base64.b64encode(data["data"]).decode("ascii")
else:
data = base64.b64encode(data).decode("ascii")
cache[filename] = json.dumps(data)
num_put += 1
cache_module = (
"triton.fb.fb_memcache.FbMemcacheRemoteFxGraphCacheBackend"
if config.is_fbcode()
else "torch._inductor.remote_cache.RedisRemoteCacheBackend"
)
with config.patch(
{
"fx_graph_cache": False,
"fx_graph_remote_cache": True,
}
), patch.dict(os.environ), patch(cache_module, MyCache, create=True):
os.environ.pop("TRITON_CACHE_MANAGER", None)
for _ in range(4):
with fresh_inductor_cache():
compiled_fn = torch.compile(fn, dynamic=dynamic)
self.assertEqual(fn(a, b), compiled_fn(a, b))
reset()
self.assertEqual(num_get, 3)
self.assertEqual(num_put, 1)
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.float64))
@parametrize("dynamic", (False, True))
def test_cache_load_model(self, device, dtype, dynamic):
"""
Verify that we can populate and load models from the cache.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
def fn(mod, x):
mod.zero_grad()
mod(x).sum().backward()
return [p.grad for p in mod.parameters()]
compiled_fn = torch.compile(fn, dynamic=dynamic)
mod = MyModelConv2d().to(device=device, dtype=dtype)
inp = torch.randn(2, 3, 16, 16, device=device, dtype=dtype)
# The first call should see all cache misses.
counters.clear()
grads1 = compiled_fn(mod, inp)
self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# The second should see all hits. (First reset so in-memory guards
# don't prevent compilation).
counters.clear()
self.reset()
grads2 = compiled_fn(mod, inp)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0)
# And the results should be the same.
self.assertEqual(grads1, grads2)
@largeTensorTest("64GB", device=GPU_TYPE)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE,))
@parametrize("dtype", (torch.float16, torch.bfloat16))
def test_cache_load_with_guards_int32_bounds(self, device, dtype):
"""
Test caching the same graph, but under conditions that introduce guards
for tensor sizes < int32.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires CUDA SM80 or later")
def fn(x, y):
return (x + x, y + y)
compiled_fn = torch.compile(fn, dynamic=True)
# Iterate over different shapes, varying whether the total
# size is below or above int32. For each combination, we expect
# different guards around whether the symbolic sizes do or do
# not exceed int32.
shapes = (
((5, 6), (7, 8)),
((5, 6), (47000, 47001)),
((47000, 47001), (5, 6)),
)
for a_shape, b_shape in shapes:
a = torch.rand(a_shape, device=device, dtype=dtype)
b = torch.rand(b_shape, device=device, dtype=dtype)
# AVOID a dynamo reset here. We expect guards to have been
# added that will be violated with the new shape. We should
# see a recompilation (along with a cache miss).
counters.clear()
res1 = compiled_fn(a, b)
self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A second call should hit. (Reset here to force compilation).
counters.clear()
self.reset()
res2 = compiled_fn(a, b)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(res1, res2)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.bfloat16))
def test_cache_load_with_guards_static_bounds(self, device, dtype):
"""
Test caching the same graph, but under conditions that introduce guards
for static bounds.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
# See lowering; for all of the pooling operators, we always guard and
# make the height/width static.
def fn(x):
return torch.nn.functional.adaptive_avg_pool2d(x, [5, 7])
compiled_fn = torch.compile(fn, dynamic=True)
# Iterate over different input shapes. Each new shape should cause
# a cache miss.
shapes = ((1, 64, 8, 9), (1, 64, 9, 10), (1, 64, 10, 11))
for shape in shapes:
x = torch.rand(shape, device=device, dtype=dtype)
# AVOID a dynamo reset here. For each cache hit, we expect guards
# to have been added that will be violated with each new shape.
# We should see a recompilation (along with a cache miss).
counters.clear()
res1 = compiled_fn(x)
self.assertGreater(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A second call should hit.
counters.clear()
self.reset()
res2 = compiled_fn(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(res1, res2)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
@parametrize("device", (GPU_TYPE, "cpu"))
def test_constant_handling(self, device):
"""
Test that different constants are recognized correctly.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
def fn1(x):
return x + torch.tensor(list(range(0, 12)), device=device)
def fn2(x):
return x + torch.tensor(list(range(1, 13)), device=device)
a = torch.rand(12, device=device)
compiled_fn1 = torch.compile(fn1)
compiled_fn2 = torch.compile(fn2)
# A call to fn1 should miss in the cache.
self.assertEqual(fn1(a), compiled_fn1(a))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A call to fn2 should also miss (the constant is different)
self.assertEqual(fn2(a), compiled_fn2(a))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
@requires_gpu()
@requires_triton()
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_higher_order_op_bypass(self):
"""
Verify that we bypass the cache when we have higher order ops.
"""
def fn(x, y):
output = torch.zeros_like(x)
n_elements = output.numel()
grid = lambda meta: ( # noqa: E731
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
)
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=4)
return output
compiled_fn = torch.compile(fn, fullgraph=True)
x = torch.randn(4, device=GPU_TYPE)
y = torch.randn(4, device=GPU_TYPE)
compiled_fn(x, y)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertGreater(counters["inductor"]["fxgraph_cache_bypass"], 0)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_generated_kernel_count(self):
"""
Test that we bump the generated_kernel_count metric on a cache hit.
"""
def fn(x, y):
return (x * y + y,)
a = torch.rand(5, 5)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn)
metrics.reset()
self.assertEqual(metrics.generated_kernel_count, 0)
# Verify the "miss" case.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(metrics.generated_kernel_count, 1)
# Verify the "hit" case
self.reset()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(metrics.generated_kernel_count, 2)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_clear(self):
"""
Test clearing the cache.
"""
def fn(x, y):
return (x * y,)
a = torch.rand(5, 5)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn)
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
# A second call should hit.
counters.clear()
self.reset()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
# Clear the cache; now we should miss.
counters.clear()
self.reset()
torch._inductor.codecache.FxGraphCache.clear()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_with_nt(self):
def gen_nt(r):
values = torch.randn(r, 16)
offsets = torch.tensor([0, 2, 3, 6, 13, r])
return torch.nested.nested_tensor_from_jagged(values, offsets)
def fn(nt):
if nt.values().size(0) % 16 == 0:
return nt.sin()
return nt.cos()
inp1 = gen_nt(19)
inp2 = gen_nt(20)
counters.clear()
torch.compile(fn)(inp1)
torch.compile(fn)(inp2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.reset()
counters.clear()
torch.compile(fn)(inp1)
torch.compile(fn)(inp2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_with_symint_non_arg_guard(self):
def fn(x, ref_id):
self_id = 22
if self_id == ref_id:
x = torch.mul(x, 1.0)
else:
x = torch.mul(x, 0)
return x
x = torch.ones(2)
counters.clear()
torch.compile(fn, fullgraph=True, dynamic=True)(x, 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.reset()
counters.clear()
torch.compile(fn, fullgraph=True, dynamic=True)(x, 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
@config.patch({"fx_graph_cache": True})
@config.patch({"fx_graph_remote_cache": False})
def test_cache_guard(self):
def f(x, val):
if val > 5:
return x.sin()
else:
return x.cos()
x = torch.ones(2)
a = torch.compile(f, dynamic=True)(x, 6)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.reset()
counters.clear()
b = torch.compile(f, dynamic=True)(x, 4)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertNotEqual(a, b)
class TestFxGraphCacheHashing(TestCase):
def test_tensor_constants(self):
"""
Test the hashing of tensor constants.
"""
data = FxGraphCachePickler.dumps(torch.tensor(list(range(9))))
self.assertIsInstance(pickle.loads(data), TensorMetadataAndValues)
def test_hash_fake_tensors(self):
"""
Test hashing (pickling) FakeTensors with various characteristics.
"""
with torch._subclasses.FakeTensorMode():
# Verify that FakeTensors get pickled into a TensorMetadata:
data = FxGraphCachePickler.dumps(torch.randn(1))
self.assertIsInstance(pickle.loads(data), TensorMetadata)
# Different shapes:
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3)),
FxGraphCachePickler.dumps(torch.randn(3)),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3)),
FxGraphCachePickler.dumps(torch.randn(4)),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3)),
FxGraphCachePickler.dumps(torch.randn(3, 3)),
)
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3, 3)),
FxGraphCachePickler.dumps(torch.randn(3, 3)),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3, 3)),
FxGraphCachePickler.dumps(torch.randn(3, 4)),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3, 3)),
FxGraphCachePickler.dumps(torch.randn(4, 3)),
)
# Different strides:
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3, 3)),
FxGraphCachePickler.dumps(
torch.randn(3, 3).transpose(0, 1).transpose(0, 1)
),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3, 3)),
FxGraphCachePickler.dumps(torch.randn(3, 3).transpose(0, 1)),
)
# Different storage offsets:
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3)[1:]),
FxGraphCachePickler.dumps(torch.randn(3)[1:]),
)
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3)[1:]),
FxGraphCachePickler.dumps(torch.randn(2)),
)
# Different dtypes:
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float32)),
FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float32)),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float32)),
FxGraphCachePickler.dumps(torch.randn(3, dtype=torch.float64)),
)
# Different 'requires_grad':
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3, requires_grad=True)),
FxGraphCachePickler.dumps(torch.randn(3, requires_grad=True)),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3, requires_grad=True)),
FxGraphCachePickler.dumps(torch.randn(3, requires_grad=False)),
)
# Different memory formats:
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(1, 2, 3, 4)),
FxGraphCachePickler.dumps(
torch.randn(1, 2, 3, 4).to(memory_format=torch.channels_last)
),
)
# Different devices:
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3, device="meta")),
FxGraphCachePickler.dumps(torch.randn(3, device="meta")),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3, device="meta")),
FxGraphCachePickler.dumps(torch.randn(3, device="cpu")),
)
if HAS_MULTIGPU:
self.assertEqual(
FxGraphCachePickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:1")),
FxGraphCachePickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:1")),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:0")),
FxGraphCachePickler.dumps(torch.randn(3, device=f"{GPU_TYPE}:1")),
)
def test_hash_kwargs(self):
"""
Test the special handling of the kwargs when hashing, i.e.,
ordering of the kwargs dict and any set arguments.
"""
# Dict order of the kwargs should not affect hashes.
details1 = FxGraphHashDetails(None, [], {"a": 0, "z": 1}, [])
details2 = FxGraphHashDetails(None, [], {"z": 1, "a": 0}, [])
self.assertEqual(
FxGraphCachePickler.dumps(details1),
FxGraphCachePickler.dumps(details2),
)
# Different kwarg values should affect hashes.
details1 = FxGraphHashDetails(None, [], {"a": 0}, [])
details2 = FxGraphHashDetails(None, [], {"a": 1}, [])
self.assertNotEqual(
FxGraphCachePickler.dumps(details1),
FxGraphCachePickler.dumps(details2),
)
# Set order should not affect hashes. Sets are unordered, but
# sorting and creating a new set seems to change the order.
set1 = {"a", "b", "c", "d", "e", "f", "g"}
set2 = set(sorted(set1)) # noqa: C414
details1 = FxGraphHashDetails(None, [], {"a": set1}, [])
details2 = FxGraphHashDetails(None, [], {"a": set2}, [])
self.assertEqual(
FxGraphCachePickler.dumps(details1),
FxGraphCachePickler.dumps(details2),
)
# But different set contents should affect hashes.
details1 = FxGraphHashDetails(None, [], {"a": {1, 2, 3}}, [])
details2 = FxGraphHashDetails(None, [], {"a": {1, 2}}, [])
self.assertNotEqual(
FxGraphCachePickler.dumps(details1),
FxGraphCachePickler.dumps(details2),
)
def test_hash_config_changes(self):
"""
Test that different config settings affect hashes.
"""
with config.patch({"max_autotune": False}):
details1 = FxGraphHashDetails(None, [], {}, [])
details2 = FxGraphHashDetails(None, [], {}, [])
with config.patch({"max_autotune": True}):
details3 = FxGraphHashDetails(None, [], {}, [])
self.assertEqual(
FxGraphCachePickler.dumps(details1),
FxGraphCachePickler.dumps(details2),
)
self.assertNotEqual(
FxGraphCachePickler.dumps(details1),
FxGraphCachePickler.dumps(details3),
)
@unittest.skipIf(not HAS_CUDA, "Requires CUDA")
@unittest.skipIf(config.is_fbcode(), "fbcode requires different CUTLASS path setup")
def test_cuda_compile_command(self):
cmd_no_extra_args: str = cuda_compile_command(
["abc.cu", "def.cu"], "output", "so"
)
assert "nvcc " in cmd_no_extra_args, cmd_no_extra_args
assert "abc.cu" in cmd_no_extra_args, cmd_no_extra_args
assert "def.cu" in cmd_no_extra_args, cmd_no_extra_args
assert "output" in cmd_no_extra_args, cmd_no_extra_args
cmd_extra_args: str = cuda_compile_command(
["abc.cu", "def.cu"], "output", "so", ["-Wwhatever", "-nothing"]
)
assert "nvcc " in cmd_extra_args, cmd_extra_args
assert " -Wwhatever" in cmd_extra_args, cmd_extra_args
assert " -nothing" in cmd_extra_args, cmd_extra_args
assert "abc.cu" in cmd_extra_args, cmd_extra_args
assert "def.cu" in cmd_extra_args, cmd_extra_args
assert "output " in cmd_extra_args, cmd_extra_args
with mock.patch("subprocess.check_output") as check_output_mock:
CUDACodeCache.compile("test123.cu", "so", ["-Wsomething"])
check_output_mock.assert_called()
cmd_parts: List[str] = check_output_mock.call_args[0][0]
assert cmd_parts[0] == "nvcc", cmd_parts
assert "-Wsomething" in cmd_parts, cmd_parts
assert "-DNDEBUG" in cmd_parts, cmd_parts
class TestUtils(TestCase):
@config.patch({"fx_graph_remote_cache": False})
def test_fresh_inductor_cache(self):
def fn(x, y):
return x + y
a = torch.rand(10)
b = torch.rand(10)
with fresh_inductor_cache():
self.assertEqual(len(PyCodeCache.cache.keys()), 0)
res1 = torch.compile(fn)(a, b)
cache_dir1 = cache_dir()
torch._dynamo.reset()
with fresh_inductor_cache():
self.assertEqual(len(PyCodeCache.cache.keys()), 0)
res2 = torch.compile(fn)(a, b)
cache_dir2 = cache_dir()
self.assertEqual(res1, res2)
self.assertNotEqual(cache_dir1, cache_dir2)
if __name__ == "__main__":
run_tests()