blob: 50526b56cecf7f32f7151672966e25d890020a6d [file] [log] [blame]
from dataclasses import dataclass
from typing import Optional, Union, Sequence, Set, List, Dict, Tuple
from tools.codegen.api.types import *
from tools.codegen.api import cpp
from tools.codegen.gen import pythonify_default
from tools.codegen.model import *
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Data Models
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# [Notes] python binding codegen
#
# The Python binding codegen produces code that takes the input list of
# PyObjects, finds the matching ATen C++ function using PythonArgParser,
# converts the PyObjects into C++ types and calls the ATen C++ function:
#
# +--------+ parsing +------------------------+ binding +-----------------------+
# | PyObjs | ---------> | PythonArgParser Output | ---------> | Cpp Function Dispatch |
# +--------+ +------------------------+ +-----------------------+
#
# The following examples demonstrate the data models the Python binding
# codegen needs to deal with and the tasks it needs to accomplish. It
# helps understand the purpose of the new data types we introduced below.
#
# - Function Schema (source of truth)
#
# aten::empty.names(int[] size, *, Dimname[]? names,
# ScalarType? dtype=None, Layout? layout=None,
# Device? device=None, bool? pin_memory=None,
# MemoryFormat? memory_format=None) -> Tensor
#
# - Python Signature
#
# It's used to generate input schema string for PythonArgParser.
# Note: TensorOptions fields are reordered and the additional
# 'requires_grad' field is added:
#
# empty(IntArrayRef size, *, DimnameList? names,
# MemoryFormat? memory_format=None, ScalarType dtype=None,
# Layout layout=torch.strided, Device device=None,
# bool pin_memory=False, bool requires_grad=False)
#
# - C++ Signature
#
# It's used to generate C++ lambda formals & dispatch call.
# Note: the scattered TensorOptions fields are packed into 'options'.
#
# auto dispatch_empty =
# [](IntArrayRef size, c10::optional<DimnameList> names,
# const TensorOptions & options,
# c10::optional<MemoryFormat> memory_format) -> Tensor {
# pybind11::gil_scoped_release no_gil;
# return torch::empty(size, names, options, memory_format);
# };
#
# - Binding between Python Arguments and C++ Arguments
#
# Given a set of Python Arguments in scope, we need produce the
# binding expressions that translate the Python API into C++ API:
#
# Python Args Cpp Args Binding Exprs
# -----------------------------------------------------------------
# 0: size size '_r.intlist(0)'
# 1: names names 'names' [special init]
# 2: memory_format -------+
# 3: dtype -----+-|--> options 'options' [special packing]
# 4: layout / |
# 5: device / +--> memory_format '_r.memoryformatOptional(2)'
# 6: pin_memory /
# 7: requires_grad -+
#
# So the full dispatch expression would look like:
#
# dispatch_empty(_r.intlist(0), names, options,
# _r.memoryformatOptional(2))
#
# Where does 'names' come from? It involves special local init:
#
# auto __names = _r.toDimnameListOptional(1);
# c10::optional<DimnameList> names =
# __names ? c10::make_optional(DimnameList(__names.value()))
# : c10::nullopt;
#
# Where does 'options' come from? It involves special local init
# for TensorOptions. Note that Python side has the additional
# 'requires_grad' field:
#
# const auto options = TensorOptions()
# .dtype(_r.scalartype(3))
# .device(_r.device(5))
# .layout(_r.layoutOptional(4))
# .requires_grad(_r.toBool(7))
# .pinned_memory(_r.toBool(6));
#
# In some other cases one Python Argument can map to multiple C++
# Arguments. For example:
#
# aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False)
# -> (Tensor values, Tensor indices)
#
# Python Args Cpp Args Binding Exprs
# ---------------------------------------------------------------------
# +----> max 'out[0]'
# /-----> max_values 'out[1]
# 0: input / self '_r.tensor(0)'
# 1: dim / dim '_r.dimname(1)'
# 2: keepdim / keepdim '_r.toBool(2)'
# 3: out -----+ [local init] out '_r.tensorlist_n<2>(3)'
#
# As demonstrated above, the binding can involve reordering,
# packing, unpacking and special local inits.
#
#
# Let's look at a concrete example:
#
# static PythonArgParser parser({
# "abs(Tensor input, *, Tensor out=None)",
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- Python Schema, represented by PythonSignature and PythonArgument
#
# }, /*traceable=*/true);
#
# ParsedArgs<2> parsed_args;
# auto _r = parser.parse(nullptr, args, kwargs, parsed_args);
#
# ...
#
# if (_r.isNone(1)) {
# ~~~~~~~~~~~~ <--- Scattered PythonArgParser output (arg name = 'out')
# represented by PythonArgParserOutputExpr
#
# // aten::abs(Tensor self) -> Tensor
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- NativeFunction schema, base version
#
# auto dispatch_abs = [](const Tensor & self) -> Tensor {
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- dispatch_lambda_args / dispatch_lambda_return_str
# generated from NativeFunction / CppSignature
# (deprecated PythonSignature is special)
# arguments are represented by DispatchLambdaArgument
#
# pybind11::gil_scoped_release no_gil;
# return self.abs();
# ~~~~~~~~~~~ <--- cpp_dispatch_target / cpp_dispatch_exprs
# generated from NativeFunction / CppSignature
# };
# return wrap(dispatch_abs(_r.tensor(0)));
# ~~~~~~~~~~~~~
# ^
# +--- dispatch_lambda_exprs
# binding PythonArgParserOutputExpr (python args)
# and DispatchLambdaArgument (c++ args)
#
# } else {
# // aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- NativeFunction schema, out-variant
#
# auto dispatch_abs_out = [](Tensor out, const Tensor & self) -> Tensor {
# pybind11::gil_scoped_release no_gil;
# return at::abs_out(out, self);
# };
# return wrap(dispatch_abs_out(_r.tensor(1), _r.tensor(0)));
# }
#
#
# [Notes] python interface codegen
# The python dataclasses below are used used to generate both python binding code
# and pyi type hint signatures.
# In theory these two should look very similar, but there are number of differences
# in how pyi signatures vs. python_arg_parser signatures are generated.
# These differences have been encapsulated in signature_str() vs. signature_str_pyi()
# to display the full signatures, and argument_str() vs argument_str_pyi() to display arguments.
# For examples, only pyi signatures include return types.
@dataclass(frozen=True)
class PythonReturns:
returns: Tuple[Return, ...]
def named_tuple_pyi(self) -> Optional[Tuple[str, str]]:
python_returns = [argument_type_str_pyi(r.type) for r in self.returns]
field_names = namedtuple_fieldnames(self.returns)
if field_names:
namedtuple_name = '_'.join(['namedtuple'] + field_names)
tuple_args = [f'("{name}", {typ})' for name, typ in zip(field_names, python_returns)]
namedtuple_def = f'NamedTuple("{namedtuple_name}", [{", ".join(tuple_args)}])'
return namedtuple_name, namedtuple_def
return None
def returns_str_pyi(self) -> str:
named_tuple = self.named_tuple_pyi()
if named_tuple is not None:
namedtuple_name, _ = named_tuple
return namedtuple_name
python_returns = [argument_type_str_pyi(r.type) for r in self.returns]
if len(python_returns) > 1:
return 'Tuple[' + ', '.join(python_returns) + ']'
if len(python_returns) == 1:
return python_returns[0]
return 'None'
@dataclass(frozen=True)
class PythonArgument:
name: str
type: Type
default: Optional[str]
# Used to generate the default init expr for some PythonArgParser outputs, e.g.:
#
# _r.layoutWithDefault(3, layout_from_backend(self.options().backend())))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ^
# +--- default_init str
default_init: Optional[str]
# Compute argument formal for python argument parsing.
# Needs to be consistent with torch/csrc/utils/python_arg_parser.h.
def argument_str(self, *, method: bool = False) -> str:
type_str = argument_type_str(self.type).replace('const ', '').replace(' &', '')
name = self.name
# s/self/input/ outside method bindings
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just
# for the parse string
if name == 'self' and type_str == 'Tensor' and not method:
name = 'input'
# add default
if self.default is not None:
default = {
'nullptr': 'None',
'c10::nullopt': 'None',
'{}': 'None',
}.get(self.default, self.default)
return f'{type_str} {name}={default}'
else:
return f'{type_str} {name}'
def argument_str_pyi(self, *, method: bool = False, deprecated: bool = False) -> str:
type_str = argument_type_str_pyi(self.type)
name = self.name
# s/self/input/ outside method bindings
# [old codegen] TODO: remove this? doesn't rename in codegen, it's just
# for the parse string
if name == 'self' and type_str == 'Tensor' and not method and not deprecated:
name = 'input'
if name == 'from': # from is a Python keyword...
name += '_'
# pyi merges the _out and functional variants into the same signature, with an optional out arg
if name == 'out' and type_str == 'Tensor' and not deprecated:
type_str = 'Optional[' + type_str + ']'
# pyi deprecated signatures don't get defaults for their out arg
treat_as_no_default = deprecated and isinstance(self, PythonOutArgument) and self.default == 'None'
# add default
if self.default is not None and not treat_as_no_default:
if isinstance(self.type, ListType) and self.type.elem == BaseType(BaseTy.int) and \
self.default.startswith('{') and self.default.endswith('}'):
default = '(' + self.default[1:-1] + ')'
else:
default = {
'nullptr': 'None',
'c10::nullopt': 'None',
'{}': 'None',
'MemoryFormat::Contiguous': 'contiguous_format',
'QScheme::PER_TENSOR_AFFINE': 'per_tensor_affine',
}.get(self.default, self.default)
return f'{name}: {type_str}={default}'
else:
return f'{name}: {type_str}'
@dataclass(frozen=True)
class PythonOutArgument(PythonArgument):
# In Python signature multiple output fields are packed into one 'out' argument.
# When binding to C++, it's first binded to a local 'out' variable:
# 'auto out = _r.tensorlist_n<2>(2);',
# then binded to scattered C++ output arguments as 'out[0]', 'out[1]', and etc.
# TODO: maybe don't need keep scattered out fields for python signature?
outputs: Tuple[PythonArgument, ...]
@staticmethod
def from_outputs(outputs: Tuple[PythonArgument, ...]) -> Optional['PythonOutArgument']:
if not outputs:
return None
size = len(outputs)
if size == 1:
return PythonOutArgument(
name=outputs[0].name,
type=outputs[0].type,
default='None',
default_init=None,
outputs=outputs,
)
elif size > 1:
if any(map(lambda a: not a.type.is_tensor_like(), outputs)):
raise RuntimeError(f'Unsupported output type: {outputs}')
return PythonOutArgument(
name='out',
# TODO: shouldn't this be OptionalType[ListType[...]], since it defaults to None?
type=ListType(BaseType(BaseTy.Tensor), size),
default='None',
default_init=None,
outputs=outputs,
)
raise AssertionError(r'Unexpected PythonOutArgument size')
@dataclass(frozen=True)
class PythonSignature:
# Base operator name, without inplace/outplace suffix.
name: str
# Positional arguments.
# TODO: create a dedicated SelfArgument type for 'self'?
input_args: Tuple[PythonArgument, ...]
# Keyword arguments excluding the 'out' argument and scattered kwargs belonging
# to TensorOptions (dtype, layout, device, pin_memory, requires_grad, etc).
input_kwargs: Tuple[PythonArgument, ...]
output_args: Optional[PythonOutArgument]
# Return types, which are only used by pyi
returns: PythonReturns
# These are scattered kwargs arguments belonging to TensorOptions.
# When binding to C++, they are packed into a TensorOptions object 'options'.
# It's possible that the C++ signature doesn't take TensorOptions object (e.g.
# for out variant), in which case they will be used as scattered fields without
# being packed into 'options'.
# TODO: maybe create a PythonTensorOptionsArgument?
tensor_options_args: Tuple[PythonArgument, ...]
# method or function signature?
method: bool
@property
def deprecated(self) -> bool:
return False
def arguments(
self, *, skip_outputs: bool = False, skip_tensor_options: bool = False
) -> Tuple[Union[PythonArgument, PythonOutArgument], ...]:
result: List[Union[PythonArgument, PythonOutArgument]] = []
result.extend(self.input_args)
result.extend(self.input_kwargs)
if self.output_args is not None and not skip_outputs:
result.append(self.output_args)
if not skip_tensor_options:
result.extend(self.tensor_options_args)
return tuple(result)
def arguments_count(self) -> int:
return len(self.arguments())
def output_idx(self) -> int:
return len(self.input_args) + len(self.input_kwargs)
# [old codegen] Compute the Python function signature for argument parsing,
# as specified in torch/csrc/utils/python_arg_parser.h. WARNING:
# this is NOT the same type signature as specified by PEP 484
# as understood by mypy; our format was independently developed
# and has some quirks to make it more suitable specifically
# for error parsing.
#
# For a translation to mypy-valid type signatures, see
# signature_str_pyi().
def signature_str(self, *, skip_outputs: bool = False) -> str:
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = list(map(lambda a: a.argument_str(method=self.method), args))
positional_argc = len(self.input_args)
if len(schema_formals) > positional_argc:
schema_formals.insert(positional_argc, '*')
return f'{self.name}({", ".join(schema_formals)})'
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = list(map(lambda a: a.argument_str_pyi(method=self.method), args))
positional_argc = len(self.input_args)
if len(schema_formals) > positional_argc:
schema_formals.insert(positional_argc, '*')
# only pyi signatures include returns
returns_str = self.returns.returns_str_pyi()
# pyi also includes self (with no typing/defaults) for methods
if self.method:
schema_formals.insert(0, "self")
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]:
# only pyi uses vararg signatures
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = list(map(lambda a: a.argument_str_pyi(method=self.method), args))
# vararg only applies to pyi signatures. vararg variants are not generated for all signatures
num_args = self.arguments_count()
num_positionalargs = len(self.input_args)
have_vararg_version = False
if num_args > 0:
vararg_type = args[0].type
if isinstance(vararg_type, ListType) and str(vararg_type.elem) == 'int' and num_positionalargs == 1:
have_vararg_version = True
if not have_vararg_version:
return None
# Below are the major changes in vararg vs. regular pyi signatures
# vararg signatures also omit the asterix
schema_formals[0] = '*' + args[0].name + ': _int'
returns_str = self.returns.returns_str_pyi()
# pyi also includes self (with no typing/defaults) for methods
if self.method:
schema_formals.insert(0, "self")
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
# The deprecated python signature involves some special logic, so create a
# dedicated data model to store these extra properties.
@dataclass(frozen=True)
class PythonSignatureDeprecated(PythonSignature):
# We need keep the order of arguments in deprecated signature.
# Particularly, method signature might have 'self' not at the beginning, e.g.:
# addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2)
# When generating lambda function signature we need follow the exact order (even for method=True):
# [](Scalar beta, const Tensor & self, const Tensor & mat1, const Tensor & mat2) -> Tensor
deprecated_args_names: Tuple[str, ...]
# The deprecated signature might miss some arguments that the corresponding
# C++ signature expects. We need store the constant default values to pass in.
# For example:
# [deprecate signature]: addmm(Scalar beta, Tensor self, Tensor mat1, Tensor mat2)
# [func schema]: aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
# [func call]: self.addmm(mat1, mat2, beta, 1)
# We store ['self', 'mat1', 'mat2', 'beta', '1'] in this case.
deprecated_args_exprs: Tuple[str, ...]
@property
def deprecated(self) -> bool:
return True
def signature_str(self, *, skip_outputs: bool = False) -> str:
return PythonSignature.signature_str(self, skip_outputs=skip_outputs) + '|deprecated'
def signature_str_pyi(self, *, skip_outputs: bool = False) -> str:
args = self.arguments(skip_outputs=skip_outputs)
schema_formals: List[str] = list(map(lambda a: a.argument_str_pyi(method=self.method, deprecated=True), args))
positional_argc = len(self.input_args)
if len(schema_formals) > positional_argc:
schema_formals.insert(positional_argc, '*')
returns_str = self.returns.returns_str_pyi()
return f'def {self.name}({", ".join(schema_formals)}) -> {returns_str}: ...'
def signature_str_pyi_vararg(self, *, skip_outputs: bool = False) -> Optional[str]:
# the codegen doesn't include vararg variants for deprecated signatures
return None
# This struct is used to hold the PythonSignature and its corresponding
# NativeFunction BEFORE grouping base and out-variant functions.
# Why not store NativeFunction in PythonSignature or construct PythonSignature
# from NativeFunction? Because they are not 1-1 mapped.
# One native function could have both deprecated and non-deprecated python
# signatures - NativeFunction doesn't contain information to construct the
# deprecated python signature.
# One python signature is used to handle both the base and the out-variant
# function - see 'PythonSignatureGroup'.
@dataclass(frozen=True)
class PythonSignatureNativeFunctionPair:
signature: PythonSignature
function: NativeFunction
# We merge pairs of functions with signatures that are equivalent mod
# output arguments, and use a single entry in the python_arg_parser sig
# list for both (output arguments become optional).
@dataclass(frozen=True)
class PythonSignatureGroup:
# The signature used for Python argument parsing. The outplace signature
# is preferred if exists, because it can be used to parse inputs for both
# the out-place variant and the base version (with output omitted).
signature: PythonSignature
# The regular ATen declaration (e.g. conv2d)
base: NativeFunction
# The out variant (e.g. conv2d_out)
outplace: Optional[NativeFunction]
# C++ function dispatch is wrapped in a lambda function. The lambda function
# has almost the same signature as the C++ function, only with some small
# variants - see details below.
# This data model is used to represent arguments of the lambda function
# signature.
@dataclass(frozen=True)
class DispatchLambdaArgument:
name: str
type_str: str
is_out_arg: bool
# To pass PyObjects arguments to C++ function (via the lambda wrapper),
# we need first convert PyObjects into simple C++ objects. This work
# is done by PythonArgParser.
# This data model is used to represent the output of PythonArgParser.
# It has 1-1 mapping with PythonArgument in PythonSignature.
@dataclass(frozen=True)
class PythonArgParserOutputExpr:
# argument name
name: str
# RHS expression to reference PythonArgParser output.
expr: str
# In some special cases we need create different expr, e.g.:
# '_r.isNone(1)' instead of '_r.tensor(1)'.
index: int
# The python argument it maps to.
argument: PythonArgument
@property
def is_none_expr(self) -> str:
return f'_r.isNone({self.index})'
# To pass PythonArgParser output to the lambda wrapper, we need bind
# PythonArgParserOutputExpr to DispatchLambdaArgument.
# They are not always 1-1 mapped, e.g. scattered TensorOptions fields
# need be packed into a TensorOptions object, which is the argument
# that the lambda function wrapper takes.
@dataclass(frozen=True)
class DispatchLambdaArgumentExprs:
# The exprs that provide the binding for lambda arguments, e.g.:
#
# 'self' -> '_r.tensor(0)'
# 'min' -> 'out[0]' / 'min_indices' -> 'out[1]'
# 'options' -> 'options'
#
# It has 1-1 mapping with DispatchLambdaArgument.
exprs: Sequence[str]
# Special local inits, which might introduce new variables that
# the 'exprs' above reference, e.g.:
#
# 'auto out = _r.tensorlist_n<2>(2);'
#
inits: Sequence[str]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Helper Functions
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def _cpp_signature(f: NativeFunction, *, method: bool = False) -> CppSignature:
return CppSignatureGroup.from_native_function(f, method=method).signature
def has_tensor_options(f: NativeFunction) -> bool:
return f.func.arguments.tensor_options is not None
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Python Signature
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# 'simple_type' was introduced by the old codegen, which is slightly
# different from the python schema type, e.g.: doesn't have '?' suffix
# for optional Tensor/TensorList; doesn't have '[size]' suffix for list type.
def argument_type_str(t: Type, *, simple_type: bool = False) -> str:
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
return 'Tensor'
elif t.name == BaseTy.int:
return 'int64_t'
elif t.name == BaseTy.float:
return 'double'
elif t.name == BaseTy.str:
return 'std::string'
elif t.name in [BaseTy.bool, BaseTy.QScheme, BaseTy.Scalar,
BaseTy.ScalarType, BaseTy.Generator, BaseTy.Storage,
BaseTy.Layout, BaseTy.Device, BaseTy.MemoryFormat,
BaseTy.Dimname, BaseTy.Stream, BaseTy.ConstQuantizerPtr]:
# These python schema type names line up with their function schema names
return t.name.name
elif isinstance(t, OptionalType):
if str(t.elem) == 'Tensor':
# Is it desired to keep '?' for simple_type with new style dispatcher?
return 'Tensor?'
elem = argument_type_str(t.elem, simple_type=simple_type)
if elem == 'Layout':
# TODO: fix this special case in PythonArgParser?
return 'Layout'
else:
return f'{elem}?'
elif isinstance(t, ListType):
size = t.size if not simple_type else None
if str(t.elem) == 'bool':
assert t.size is not None
return f'std::array<bool,{t.size}>'
elif str(t.elem) == 'int':
return f'IntArrayRef[{size}]' if size is not None else 'IntArrayRef'
elif str(t.elem) == 'Tensor':
return f'TensorList[{size}]' if size is not None else 'TensorList'
elif str(t.elem) == 'Scalar':
return f'ScalarList[{size}]' if size is not None else 'ScalarList'
elif str(t.elem) == 'Tensor?':
if simple_type:
return 'c10::List<c10::optional<Tensor>>'
else:
return 'const c10::List<c10::optional<Tensor>> &'
elif str(t.elem) == 'Dimname':
return f'DimnameList[{size}]' if size is not None else 'DimnameList'
elem = argument_type_str(t.elem, simple_type=simple_type)
return f'ArrayRef<{elem}>'
raise RuntimeError(f'unrecognized type {repr(t)}')
def argument_type_size(t: Type) -> Optional[int]:
l = t.is_list_like()
if l is not None and str(l.elem) != 'bool':
return l.size
else:
return None
def argument(a: Argument) -> PythonArgument:
return PythonArgument(
name=a.name,
type=a.type,
# TODO: directly translate a.default to python default
default=str(pythonify_default(cpp.default_expr(a.default, a.type)))
if a.default is not None else None,
default_init=None,
)
# Generates a PythonSignature that can be used for either .pyi or PythonArgParser codegen
def signature(f: NativeFunction, *, method: bool = False, pyi: bool = False) -> PythonSignature:
args: List[Argument] = []
args.extend(f.func.arguments.pre_self_positional)
# Skip SelfArgument if this is method.
if not method and f.func.arguments.self_arg is not None:
args.append(f.func.arguments.self_arg.argument)
args.extend(f.func.arguments.post_self_positional)
args.extend(f.func.arguments.pre_tensor_options_kwarg_only)
# Skip TensorOptionsArguments. Python side TensorOptions
# arguments are created based on different rules - see below.
args.extend(f.func.arguments.post_tensor_options_kwarg_only)
args.extend(f.func.arguments.out)
input_arg_set = set(a.name for a in f.func.arguments.flat_positional)
kwarg_only_set = set(a.name for a in f.func.arguments.flat_kwarg_only)
out_arg_set = set(a.name for a in f.func.arguments.out)
input_args = tuple(map(argument, filter(lambda a: a.name in input_arg_set, args)))
input_kwargs = tuple(map(argument, filter(lambda a: a.name in kwarg_only_set, args)))
outputs = tuple(map(argument, filter(lambda a: a.name in out_arg_set, args)))
# Reintroduce the scattered fields of TensorOptions for Python.
# Compared to the cpp counterpart, the python arguments have new property
# (default_init) and a new argument 'requires_grad', which require some
# special handlings.
# [old codegen] TODO: because these aren't guaranteed to be 100% faithful
# to the original versions in the yaml, this recreation is a potential
# source of drift between eager and JIT. Pull this logic out to a shared place.
has_tensor_input_arg = any(a.type.is_tensor_like() for a in f.func.arguments.flat_non_out)
if any(a.name == 'requires_grad' for a in f.func.schema_order_arguments()):
raise ValueError('argument named requires_grad is reserved, should not explicitly add it in the schema')
# [old codegen] this probably won't work if one of the returns is not a tensor,
# but it will produce a compile-time error that is obvious.
has_tensor_return = any(r.type.is_tensor_like() for r in f.func.returns)
name: str = cpp.name(f.func)
is_factory_function = f.category_override == 'factory' or (has_tensor_return and not has_tensor_input_arg)
is_like_or_new_function = f.category_override in ('new', 'like') or name.startswith('new_') or name.endswith('_like')
tensor_options_args: List[PythonArgument] = []
if is_factory_function or is_like_or_new_function:
tensor_options_args.append(PythonArgument(
name='dtype',
type=BaseType(BaseTy.ScalarType),
default='None' if pyi else _dtype_default_type_hack(name),
default_init='self.scalar_type()' if is_like_or_new_function else None,
))
tensor_options_args.append(PythonArgument(
name='layout',
type=OptionalType(BaseType(BaseTy.Layout)),
default='strided' if pyi else 'torch.strided',
default_init='self.layout()' if is_like_or_new_function else None,
))
tensor_options_args.append(PythonArgument(
name='device',
type=BaseType(BaseTy.Device),
default='None',
default_init='self.device()' if is_like_or_new_function else None,
))
tensor_options_args.append(PythonArgument(
name='pin_memory',
type=BaseType(BaseTy.bool),
default='False',
default_init=None,
))
tensor_options_args.append(PythonArgument(
name='requires_grad',
type=BaseType(BaseTy.bool),
default='False',
default_init=None,
))
returns = PythonReturns(returns=f.func.returns)
return PythonSignature(
name=str(f.func.name.name),
input_args=input_args,
input_kwargs=input_kwargs,
output_args=PythonOutArgument.from_outputs(outputs),
tensor_options_args=tuple(tensor_options_args),
returns=returns,
method=method,
)
# TODO blowtorch
# note: removing this will be BC-breaking. A quick test shows that
# randperm will otherwise default its dtype to torch.float64
def _dtype_default_type_hack(name: str) -> str:
if name.startswith('randperm') or name == 'tril_indices' or name == 'triu_indices':
return 'torch.int64'
else:
return 'None'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Python Interface
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def namedtuple_fieldnames(returns: Tuple[Return, ...]) -> List[str]:
if len(returns) <= 1 or all(map(lambda r: r.name is None, returns)):
return []
else:
if any(map(lambda r: r.name is None, returns)):
# When building on Windows, `PyStructSequence_UnnamedField` could not be
# resolved by the linker for some reason, which cause error in building:
#
# python_nn_functions.cpp.obj : error LNK2001: unresolved external symbol
# PyStructSequence_UnnamedField
#
# Thus, at this point in time, we do not support unnamed
# fields in namedtuple; you must either name all fields,
# or none of them.
raise ValueError("Unnamed field is not supported by codegen")
return list(map(lambda r: str(r.name), returns))
def argument_type_str_pyi(t: Type) -> str:
add_optional = False
if isinstance(t, OptionalType):
t = t.elem
add_optional = True
if isinstance(t, BaseType):
if t.name == BaseTy.int:
ret = '_int'
elif t.name == BaseTy.float:
ret = '_float'
elif t.name == BaseTy.str:
ret = 'str'
elif t.name == BaseTy.Scalar:
ret = 'Number'
elif t.name == BaseTy.ScalarType:
ret = '_dtype'
elif t.name == BaseTy.bool:
ret = '_bool'
elif t.name == BaseTy.QScheme:
ret = '_qscheme'
elif t.name == BaseTy.Layout:
ret = '_layout'
elif t.name == BaseTy.Device:
ret = 'Union[_device, str, None]'
elif t.name == BaseTy.MemoryFormat:
ret = 'memory_format'
elif t.name == BaseTy.Dimname:
ret = 'Union[str, ellipsis, None]'
elif t.name in [BaseTy.Tensor, BaseTy.Generator,
BaseTy.Storage, BaseTy.Stream, BaseTy.str]:
# These python schema type names line up with their function schema names
ret = t.name.name
elif isinstance(t, ListType):
if str(t.elem) == 'int':
ret = 'Union[_int, _size]' if t.size is not None else '_size'
elif t.is_tensor_like():
# TODO: this doesn't seem right...
# Tensor?[] currently translates to Optional[Union[Tuple[Tensor, ...], List[Tensor]]]
# It should probably translate to Union[Tuple[Optional[Tensor], ...], List[Optional[Tensor]]]
if isinstance(t.elem, OptionalType):
add_optional = True
ret = 'Union[Tensor, Tuple[Tensor, ...], List[Tensor]]' if t.size is not None else \
'Union[Tuple[Tensor, ...], List[Tensor]]'
elif str(t.elem) == 'float':
ret = 'Sequence[float]'
else:
elem = argument_type_str_pyi(t.elem)
ret = f'Sequence[{elem}]'
if add_optional:
ret = 'Optional[' + ret + ']'
return ret
raise RuntimeError(f'unrecognized type {repr(t)}')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# C++ Function Dispatch
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# This section provides APIs to generate the code that does C++ function
# dispatch. The C++ function call is wrapped by a lambda function.
# For example:
#
# // aten::selu_(Tensor(a!) self) -> Tensor(a!)
# auto dispatch_selu_ = [](Tensor self) -> Tensor {
# pybind11::gil_scoped_release no_gil;
# return at::selu_(self);
# };
#
# The lambda function's signature follows the C++ signature in common
# cases, e.g.:
#
# // aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
# [](const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
#
# For out variant the 'out' argument's type is changed from 'Tensor &'
# to 'Tensor'. It's because when calling the lambda it passes in the
# PythonArgParser output '_r.tensor(3)', which is stack allocated object
# and needs to pass by value. Also see comments in 'dispatch_lambda_return_str()'.
#
# // aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
# [](Tensor out, const Tensor & self, const Tensor & other, Scalar alpha) -> Tensor
#
# For multi-output case it can keep using reference type because the
# PythonArgParser output has been unpacked to local variables, e.g.:
#
# // aten::max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *,
# // Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
# [](Tensor & max, Tensor & max_values, const Tensor & self, Dimname dim, bool keepdim) -> std::tuple<Tensor,Tensor>
#
# For deprecated python signature, it should follow deprecated python arg order.
# TODO: This is to keep same byte-for-byte result as the old codegen - maybe unnecessary?
def dispatch_lambda_args(ps: PythonSignature, f: NativeFunction) -> Tuple[DispatchLambdaArgument, ...]:
# Start with cpp arguments - dispatch lambda signature always include 'self'
cpp_args: Sequence[Binding] = _cpp_signature(f, method=False).arguments()
# Special reorder logic for deprecated python signature
if isinstance(ps, PythonSignatureDeprecated):
m: Dict[str, Binding] = dict((a.name, a) for a in cpp_args)
# reorder according to the deprecated signature
# ignore 'out' argument when binding to non-output function.
ordered_args = filter(lambda n: n != 'out' or f.func.is_out_fn(),
ps.deprecated_args_names)
cpp_args = list(map(lambda n: m[n], ordered_args))
out_args: Set[str] = set(a.name for a in f.func.arguments.out)
# Convert from cpp argument to lambda argument
def dispatch_lambda_arg(cpp_arg: Binding) -> DispatchLambdaArgument:
type_str = cpp_arg.type
is_out_arg = cpp_arg.name in out_args
if ps.method and cpp_arg.name == 'self':
# For method's 'self', we can use 'Tensor &' and simply ignore mutability!
type_str = 'Tensor &'
else:
# For other cases we need prevent dangling refs to temps (unless it's
# unpacked scattered output)
# The reason is explained in the comments above and in 'dispatch_lambda_return_str()'.
# TODO: avoid this special handling?
ensure_temp_safe = len(out_args) <= 1 or not is_out_arg
if ensure_temp_safe:
type_str = {
'Tensor &': 'Tensor',
}.get(type_str, type_str)
return DispatchLambdaArgument(
name=cpp_arg.name,
type_str=type_str,
is_out_arg=is_out_arg,
)
return tuple(map(dispatch_lambda_arg, cpp_args))
# [old codegen] XXX: if you got here because of an assertion failure, it doesn't mean
# it's enough to just extend the list here. Before you do this, make sure
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
SUPPORTED_RETURN_TYPES = {
'Tensor',
'std::tuple<Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor>',
'std::tuple<Tensor,Tensor,Tensor,int64_t>',
'std::tuple<Tensor,Tensor,double,int64_t>',
'std::tuple<Tensor,Tensor,Tensor,Tensor,int64_t>',
'std::tuple<Tensor,Tensor,double,Tensor,int64_t>',
'std::tuple<double,int64_t>',
'std::vector<Tensor>',
'Scalar', 'bool', 'int64_t', 'void*', 'void',
'QScheme', 'double',
'IntArrayRef',
'ScalarType'
}
def dispatch_lambda_return_str(f: NativeFunction) -> str:
# [old codegen] Remove type annotation (e.g. 'Tensor' rather than 'Tensor &')
# because the dispatch lambdas take mutable arguments *by value*, not
# by reference. If you then return a reference to such an argument, you
# will now have a pointer to a dangling stack entry. Not good.
#
# You want:
#
# auto dispatch_selu_ = [](Tensor self) -> Tensor { ...; return at::selu_(self); };
# ^^^^^^
#
# *not*
#
# auto dispatch_selu_ = [](Tensor self) -> Tensor& { ...; return at::selu_(self); };
# ^^^^^^^
#
# (NB: We can't make dispatch_selu_ take Tensor&, because the enclosing
# codegen looks like dispatch_selu_(_r.tensor(0)), and you can't take a
# mutable reference to temporary. Maybe we could assign it to a
# variable itself.)
returns_without_annotation = tuple(map(lambda r: Return(r.name, r.type, None), f.func.returns))
return_str = cpp.returns_type(returns_without_annotation)
if return_str not in SUPPORTED_RETURN_TYPES:
raise RuntimeError(f'{f.func.name} returns unsupported type {return_str}')
return return_str
def cpp_dispatch_target(f: NativeFunction) -> str:
name = cpp.name(f.func)
if Variant.method in f.variants:
return f'self.{name}'
if Variant.function in f.variants:
if has_tensor_options(f) or f.func.name.name.base.endswith('_like'):
namespace = 'torch'
else:
namespace = 'at'
return f'{namespace}::{name}'
raise RuntimeError(f'could not dispatch, neither function nor method: {f.func}')
def cpp_dispatch_exprs(f: NativeFunction, *,
python_signature: Optional[PythonSignature] = None,
) -> Tuple[str, ...]:
cpp_args: Sequence[Binding] = _cpp_signature(f, method=False).arguments()
exprs: Tuple[str, ...] = tuple()
if not isinstance(python_signature, PythonSignatureDeprecated):
# By default the exprs are consistent with the C++ signature.
exprs = tuple(map(lambda a: a.name, cpp_args))
else:
# For deprecated python signature we may need fill in some constants.
exprs = tuple(filter(lambda n: n != 'out' or f.func.is_out_fn(),
python_signature.deprecated_args_exprs))
if Variant.method in f.variants:
exprs = tuple(filter('self'.__ne__, exprs))
return exprs
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Python / C++ Args Binding
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# We explicitly enumerate the PythonArgParser unpacking methods for all
# supported types. This might be more verbose than necessary, partially
# because of the irregularity of unpacking method naming, partially
# because we want to mimic the old codegen behavior - to reject
# unexpected and/or unsupported cases which the old codegen rejects.
# For certain cases it is intentionally more restrictive than necessary,
# e.g.: it doesn't accepts doublelist with definite size.
def arg_parser_unpack_method(t: Type, has_default: bool) -> str:
if has_default and str(t) not in ('ScalarType', 'Device', 'Layout?'):
raise RuntimeError(f'type \'{t}\' does not supported unpacking with default')
if isinstance(t, BaseType):
if t.name in [BaseTy.Tensor, BaseTy.Stream, BaseTy.Storage,
BaseTy.Scalar, BaseTy.Dimname]:
# These unpack methods line up with their schema names
return t.name.name.lower()
elif t.name == BaseTy.ScalarType:
return 'scalartypeWithDefault' if has_default else 'scalartype'
elif t.name == BaseTy.Device:
return 'deviceWithDefault' if has_default else 'device'
elif t.name == BaseTy.int:
return 'toInt64'
elif t.name == BaseTy.bool:
return 'toBool'
elif t.name == BaseTy.float:
return 'toDouble'
elif t.name == BaseTy.str:
return 'string'
elif isinstance(t, OptionalType):
if str(t.elem) == 'Tensor':
return 'optionalTensor'
elif isinstance(t.elem, BaseType):
if t.elem.name in [BaseTy.ScalarType, BaseTy.Scalar,
BaseTy.int, BaseTy.bool,
BaseTy.float, BaseTy.str]:
# Regular cases: append 'Optional' to elem's unpacking method
return arg_parser_unpack_method(t.elem, False) + 'Optional'
elif t.elem.name == BaseTy.MemoryFormat:
return 'memoryformatOptional'
elif t.elem.name == BaseTy.Generator:
return 'generator'
elif t.elem.name == BaseTy.Layout:
return 'layoutWithDefault' if has_default else 'layoutOptional'
elif isinstance(t.elem, ListType):
if str(t.elem.elem) == 'int':
# accept definite size
return 'intlistOptional'
elif str(t.elem) == 'float[]':
return 'doublelistOptional'
elif str(t.elem) == 'Dimname[]':
return 'toDimnameListOptional'
elif isinstance(t, ListType):
if str(t.elem) == 'Tensor':
# accept and use definite size
if t.size is not None:
return f'tensorlist_n<{t.size}>'
else:
return 'tensorlist'
elif str(t.elem) == 'Tensor?':
return 'list_of_optional_tensors'
elif str(t.elem) == 'Dimname':
# accept definite size
return 'dimnamelist'
elif str(t.elem) == 'int':
# accept definite size
return 'intlist'
elif str(t) == 'float[]':
return 'doublelist'
elif str(t) == 'Scalar[]':
return 'scalarlist'
raise RuntimeError(f'type \'{t}\' is not supported by PythonArgParser')
# Return RHS expression for python argument using PythonArgParser output.
# e.g. for arg name 'foo', arg type 'bool', arg_index = 2, returns '_r.toBool(2)'
def arg_parser_output_expr(
arg_index: int, a: PythonArgument
) -> PythonArgParserOutputExpr:
has_default = a.default_init is not None
unpack_method = arg_parser_unpack_method(a.type, has_default)
default = f', {a.default_init}' if has_default else ''
expr = f'_r.{unpack_method}({arg_index}{default})'
return PythonArgParserOutputExpr(
name=a.name,
expr=expr,
index=arg_index,
argument=a,
)
# Returns a map with key = arg_name and value = PythonArgParserOutputExpr.
def arg_parser_output_exprs(
ps: PythonSignature, f: NativeFunction
) -> Dict[str, PythonArgParserOutputExpr]:
return {e.name: e for i, a in enumerate(ps.arguments())
for e in (arg_parser_output_expr(i, a), )}
# argument name to type for scattered tensor options fields
TENSOR_OPTIONS_FIELDS = {
'dtype': 'ScalarType',
'device': 'Device',
'layout': 'Layout?',
'pin_memory': 'bool',
'requires_grad': 'bool',
}
# bind arg parser outputs (python args) with dispatch lambda arguments (c++ args).
def dispatch_lambda_exprs(
ps: PythonSignature, f: NativeFunction
) -> DispatchLambdaArgumentExprs:
# This method is to bind 'arg_parser_outputs' and 'lambda_args' by producing
# 'inits' and 'lambda_args_exprs' for each lambda argument using arg parser
# outputs.
arg_parser_outputs = arg_parser_output_exprs(ps, f)
lambda_args = dispatch_lambda_args(ps, f)
inits: List[str] = []
lambda_args_exprs: Dict[str, str] = dict()
has_toptions = has_tensor_options(f)
# 1. special inits/unpacking to provide binding exprs for lambda arguments.
for a in ps.arguments(skip_tensor_options=True):
name = a.name
arg_parser_expr = arg_parser_outputs[a.name].expr
if has_toptions and name == 'self':
# TODO: why this needs to be special case?
inits.extend([
f'auto self = {arg_parser_expr};',
])
lambda_args_exprs[name] = name
elif isinstance(a, PythonOutArgument) and len(a.outputs) > 1 and f.func.is_out_fn():
inits.extend([
f'auto out = {arg_parser_expr};',
])
for i, out_arg in enumerate(a.outputs):
lambda_args_exprs[out_arg.name] = f'out[{i}]'
elif str(a.type) == 'Dimname[]?':
# [old codegen]
# TODO: make this part of something more general, or get rid of it.
# optional<ArrayRef<T>> are special. The PythonArgParser returns an
# optional<vector<T>>, which cannot be implicitly converted to
# optional<ArrayRef<T>>. One needs to unwrap the optional and rewrap.
inits.extend([
f'auto __{name} = {arg_parser_expr};',
f'c10::optional<DimnameList> {name} = __{name} ? c10::make_optional(DimnameList(__{name}.value())) : c10::nullopt;',
])
lambda_args_exprs[name] = name
else:
# default case - directly using PythonArgParser output expr
lambda_args_exprs[name] = arg_parser_expr
# method's self is passed directly to python binding, rather than parsed
if ps.method:
lambda_args_exprs['self'] = 'self'
# 2. special packing/checking for TensorOptions.
tensor_options_args_names = list(map(lambda a: a.name, ps.tensor_options_args))
if has_toptions:
if f.func.is_out_fn():
raise RuntimeError(f'{f.func}: tensor options with output arg')
for a in ps.tensor_options_args:
if a.name not in TENSOR_OPTIONS_FIELDS:
raise RuntimeError(
f'{f.func}: unrecognized tensor options field \'{a.name}\' in python binding arguments')
if str(a.type) != TENSOR_OPTIONS_FIELDS.get(a.name):
raise RuntimeError(
f'{f.func}: unrecognized type \'{str(a.type)}\' for tensor options field \'{a.name}\'')
if not all(map(lambda a: a in tensor_options_args_names, TENSOR_OPTIONS_FIELDS.keys())):
raise RuntimeError(
f'{f.func}: incomplete tensor options args: {tensor_options_args_names}')
inits.append(f'''\
const auto options = TensorOptions()
.dtype({arg_parser_outputs['dtype'].expr})
.device({arg_parser_outputs['device'].expr})
.layout({arg_parser_outputs['layout'].expr})
.requires_grad({arg_parser_outputs['requires_grad'].expr})
.pinned_memory({arg_parser_outputs['pin_memory'].expr});
torch::utils::maybe_initialize_cuda(options);
''')
lambda_args_exprs['options'] = 'options'
# 3. special case - access scattered TensorOptions fields without packing
# TODO: maybe move to the generator side as it's not related to binding.
if not has_toptions and tensor_options_args_names:
if 'dtype' in tensor_options_args_names:
# we're an output-arg variant, check these args against output tensor
if not f.func.is_out_fn():
raise RuntimeError(
f'{f.func}: dtype in tensor_options_args without output arg')
if not all(map(lambda a: a in tensor_options_args_names, ('layout', 'device'))):
raise RuntimeError(
f'{f.func}: incomplete tensor options for output check')
inits.append(f"""\
check_out_type_matches({arg_parser_outputs['out'].expr}, {arg_parser_outputs['dtype'].expr},
{arg_parser_outputs['dtype'].is_none_expr}, {arg_parser_outputs['layout'].expr},
{arg_parser_outputs['device'].expr}, {arg_parser_outputs['device'].is_none_expr});
""")
# we'll set requires_grad on outgoing tensor
if 'requires_grad' not in tensor_options_args_names:
raise RuntimeError(
f'{f.func}: expected "requires_grad" in tensor_options_args absent, but found [{tensor_options_args_names}]')
return DispatchLambdaArgumentExprs(
exprs=tuple(map(lambda a: lambda_args_exprs[a.name], lambda_args)),
inits=inits,
)