| #include <cmath> |
| |
| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/elementwise_op.h" |
| |
| namespace caffe2 { |
| |
| template <typename T> |
| __global__ void SigmoidKernel(const int N, const T* x, T* y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| y[i] = 1. / (1. + exp(-x[i])); |
| } |
| } |
| |
| template <typename T> |
| __global__ void SigmoidGradientKernel(const int N, const T* y, const T* dy, |
| T* dx) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dx[i] = dy[i] * y[i] * (1. - y[i]); |
| } |
| } |
| |
| struct SigmoidCUDAFunctor { |
| template <typename T> |
| inline void operator()(const int n, const T* x, |
| T* y, CUDAContext* device_context) { |
| SigmoidKernel<T><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, device_context->cuda_stream()>>>(n, x, y); |
| return; |
| } |
| }; |
| |
| struct SigmoidGradientCUDAFunctor { |
| template <typename T> |
| inline void Run(const int n, const T* y, const T* dy, |
| T* dx, CUDAContext* device_context) { |
| SigmoidGradientKernel<T><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, device_context->cuda_stream()>>>(n, y, dy, dx); |
| return; |
| } |
| }; |
| |
| namespace { |
| REGISTER_CUDA_OPERATOR( |
| Sigmoid, |
| UnaryElementwiseOp<TensorTypes<float>, CUDAContext, SigmoidCUDAFunctor>); |
| REGISTER_CUDA_OPERATOR( |
| SigmoidGradient, BinaryElementwiseOp< |
| TensorTypes<float>, CUDAContext, |
| WithoutBroadcast<SigmoidGradientCUDAFunctor>>); |
| } // namespace |
| } // namespace caffe2 |