blob: 06d7a7ffc9ca33bc5efca200408f84073bfa6694 [file] [log] [blame]
#include <cmath>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/elementwise_op.h"
namespace caffe2 {
template <typename T>
__global__ void SigmoidKernel(const int N, const T* x, T* y) {
CUDA_1D_KERNEL_LOOP(i, N) {
y[i] = 1. / (1. + exp(-x[i]));
}
}
template <typename T>
__global__ void SigmoidGradientKernel(const int N, const T* y, const T* dy,
T* dx) {
CUDA_1D_KERNEL_LOOP(i, N) {
dx[i] = dy[i] * y[i] * (1. - y[i]);
}
}
struct SigmoidCUDAFunctor {
template <typename T>
inline void operator()(const int n, const T* x,
T* y, CUDAContext* device_context) {
SigmoidKernel<T><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, device_context->cuda_stream()>>>(n, x, y);
return;
}
};
struct SigmoidGradientCUDAFunctor {
template <typename T>
inline void Run(const int n, const T* y, const T* dy,
T* dx, CUDAContext* device_context) {
SigmoidGradientKernel<T><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, device_context->cuda_stream()>>>(n, y, dy, dx);
return;
}
};
namespace {
REGISTER_CUDA_OPERATOR(
Sigmoid,
UnaryElementwiseOp<TensorTypes<float>, CUDAContext, SigmoidCUDAFunctor>);
REGISTER_CUDA_OPERATOR(
SigmoidGradient, BinaryElementwiseOp<
TensorTypes<float>, CUDAContext,
WithoutBroadcast<SigmoidGradientCUDAFunctor>>);
} // namespace
} // namespace caffe2