| #include <c10/util/irange.h> |
| #include <torch/csrc/autograd/custom_function.h> |
| #include <torch/csrc/autograd/functions/accumulate_grad.h> |
| #include <torch/csrc/autograd/autograd.h> |
| |
| namespace torch { namespace autograd { |
| |
| VariableInfo::VariableInfo(const Variable& var) |
| : layout(var.layout()) |
| , device(var.device()) |
| , scalar_type(var.scalar_type()) |
| , size(var.sizes().vec()) |
| , requires_grad(var.requires_grad()) |
| , is_empty(false) { |
| } |
| |
| VariableInfo::VariableInfo() : requires_grad(false), is_empty(true) {} |
| |
| Variable VariableInfo::zeros(at::OptionalDeviceGuard& device_guard) const { |
| if (is_empty) { |
| // Return undefined tensor. |
| return at::Tensor(); |
| } else { |
| return at::zeros( |
| size, at::TensorOptions(scalar_type).device(device).layout(layout)); |
| } |
| } |
| |
| // This function has two main goals: |
| // 1) Use the user-provided jvp function to populate the the outputs' forward gradient |
| // 2) Perform error checking to ensure that view and inplace ops are properly handled |
| // |
| // For 1) we have to: |
| // - Create a variable_list of grad_inputs based on the function inputs |
| // - Call the user jvp function with these to get the grad_outputs |
| // - Set the forward grad field on each output based on these grad_outputs |
| // |
| // For 2) we want to check the following: |
| // - If an output is a view, then the generated forward grad must be a view as well and |
| // the output's base's forward grad must be the output's forward grad's base. |
| // - If an input was modified inplace (it must be an output as well) we make sure that its |
| // forward grad was also modified inplace and already present on the corresponding output. |
| void _process_forward_mode_AD(const variable_list &inputs, |
| std::unordered_map<at::TensorImpl*, size_t> inputs_mapping, |
| const at::ArrayRef<c10::optional<Variable>> raw_outputs, |
| const optional_variable_list &outputs, |
| const std::unordered_set<at::TensorImpl*> &non_differentiable, |
| const std::unordered_set<at::TensorImpl*> &dirty_inputs, |
| _jvp_fn_t jvp_user_function) { |
| |
| // TODO handle multiple levels here |
| uint64_t level = 0; |
| |
| const auto num_inputs = inputs.size(); |
| const auto num_outputs = outputs.size(); |
| |
| // The tracking info below are used to perform the view and inplace checks. |
| // They are lazily initialized to reduce the cost of this function in the common |
| // case where the user is not using forward mode AD. |
| variable_list input_grads; |
| std::vector<int64_t> grad_versions; |
| std::vector<at::TensorImpl*> grad_impls; |
| std::unordered_map<at::TensorImpl*, size_t> inputs_bases; |
| |
| auto init_tracked_info = [&] () { |
| input_grads.resize(num_inputs); |
| grad_versions.resize(num_inputs); |
| grad_impls.resize(num_inputs); |
| |
| for (const auto i: c10::irange(num_inputs)) { |
| const auto& inp = inputs[i]; |
| if (inp.is_view() && impl::get_view_autograd_meta(inp)->has_fw_view()) { |
| inputs_bases.emplace(impl::get_view_autograd_meta(inp)->get_forward_view().base_.unsafeGetTensorImpl(), i); |
| } else { |
| inputs_bases.emplace(inp.unsafeGetTensorImpl(), i); |
| } |
| |
| } |
| }; |
| |
| bool any_input_has_grad = false; |
| // Extract the input's forward gradients and record any info we will need later |
| for (const auto i : c10::irange(num_inputs)) { |
| const auto& inp = inputs[i]; |
| if (!inp.defined()) { |
| continue; |
| } |
| const auto& fw_grad = inp._fw_grad(level); |
| if (fw_grad.defined()) { |
| if (!any_input_has_grad) { |
| any_input_has_grad = true; |
| init_tracked_info(); |
| } |
| input_grads[i] = fw_grad; |
| grad_versions[i] = fw_grad._version(); |
| grad_impls[i] = fw_grad.unsafeGetTensorImpl(); |
| } |
| } |
| |
| // If no input has forward grad, nothing to do here |
| if (!any_input_has_grad) { |
| return; |
| } |
| |
| |
| auto forward_grads = jvp_user_function(inputs, input_grads); |
| |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-init-variables) |
| const auto num_forward_grads = forward_grads.size(); |
| // contrary to backward mode, we don't allow returning too many gradients |
| TORCH_CHECK(num_forward_grads == num_outputs, "Function's jvp returned " |
| "an invalid number of of forward gradients (expected ", num_outputs, |
| " but got ", num_forward_grads, ")"); |
| |
| for (const auto i : c10::irange(num_outputs)) { |
| const auto& out = outputs[i].has_value()? outputs[i].value() : at::Tensor(); |
| const auto& out_grad = forward_grads[i]; |
| if (!out.defined()) { |
| TORCH_CHECK(!out_grad.defined(), "Function's jvp returned a gradient at position ", i, ", but " |
| " the corresponding forward output is not a differentiable Tensor"); |
| continue; |
| } |
| |
| TORCH_INTERNAL_ASSERT(raw_outputs[i].has_value()); |
| auto out_tensor_impl = raw_outputs[i].value().unsafeGetTensorImpl(); |
| bool is_input = inputs_mapping.count(out_tensor_impl) > 0; |
| bool is_modified = dirty_inputs.count(out_tensor_impl) > 0; |
| |
| if (is_modified) { |
| TORCH_CHECK(is_input, "Only input Tensors should be given to ctx.mark_dirty(). If a Tensor is not an input, there" |
| " is no need to pass it to mark_dirty()."); |
| auto inp_idx = inputs_mapping[out_tensor_impl]; |
| if (grad_impls[inp_idx]) { |
| // If there was already a forward grad for that input |
| // Just make sure that it is modified inplace and returned as-is |
| TORCH_CHECK(out_grad._version() != grad_versions[inp_idx], "An inplace custom Function is not modifying the " |
| "forward mode gradients inplace. If the forward is modifying an input inplace, then the jvp " |
| "function must modify the corresponding gradient inplace.") |
| TORCH_CHECK(out_grad.unsafeGetTensorImpl() == grad_impls[inp_idx], "An inplace custom Function is not returning the " |
| "forward mode gradients as-is. If the forward is modifying an input inplace, then the jvp " |
| "function must modify the gradient inplace and return it as-is.") |
| } else { |
| // If that Tensor didn't had gradients already, set the newly returned one |
| // We could also use inputs[inp_idx] here as it is the same as out |
| out._set_fw_grad(out_grad, level, /* is_inplace_op */ true); |
| } |
| } else { |
| // At this point, outputs[i] cannot be one of the input (raw_outputs[i] might be but was changed by the backward code) |
| TORCH_INTERNAL_ASSERT(inputs_mapping.count(out.unsafeGetTensorImpl()) == 0); |
| if (is_input && !is_modified) { |
| // If the forward return an input as-is, since backward code performed a view without the |
| // forward no-grad guard, we are done. |
| continue; |
| } |
| |
| if (out.is_view() && impl::get_view_autograd_meta(out)->has_fw_view()) { |
| // If the output is a view |
| const auto& out_view_info = impl::get_view_autograd_meta(out)->get_forward_view(); |
| if (inputs_bases.count(out_view_info.base_.unsafeGetTensorImpl())) { |
| // And it is a view of an input (either that input is its base or they have a common base) |
| const auto matching_input_idx = inputs_bases[out_view_info.base_.unsafeGetTensorImpl()]; |
| const auto& matching_input = inputs[matching_input_idx]; |
| |
| const auto& matching_input_grad = matching_input._fw_grad(level); |
| |
| // If the matching input has a forward grad, the user should have returned a view of that Tensor |
| if (matching_input_grad.defined()) { |
| TORCH_CHECK(out_grad.is_view() && impl::get_view_autograd_meta(out_grad)->has_fw_view(), |
| "A custom Function's forward is returning a view but the jvp is not returning a view."); |
| |
| const auto& out_grad_base = impl::get_view_autograd_meta(out_grad)->get_forward_view().base_; |
| if (matching_input_grad.is_view() && impl::get_view_autograd_meta(matching_input_grad)->has_fw_view()) { |
| // If the matching input's grad is a view, ensure that the out_grad is a view of the same base |
| const auto& matching_input_grad_base = impl::get_view_autograd_meta(matching_input_grad)->get_forward_view().base_; |
| TORCH_CHECK(matching_input_grad_base.unsafeGetTensorImpl() == out_grad_base.unsafeGetTensorImpl(), |
| "A custom Function is returning a view but the jvp is not returning a view of the same base as " |
| "the given grad input."); |
| } else { |
| // If the matching input's grad is not a view, then it must be the output gradient's base |
| TORCH_CHECK(matching_input_grad.unsafeGetTensorImpl() == out_grad_base.unsafeGetTensorImpl(), |
| "A custom Function is returning a view but the jvp is not returning a view of the given grad input."); |
| } |
| } else { |
| // We have a view op where the input didn't have a forward grad but the user returned one for the output |
| // To ensure that we maintain the view/inplace constraints, we consider this as an inplace op |
| // This case CANNOT happen in codegen as all view ops are mapping from one Tensor to one Tensor and so the output |
| // of the view cannot have a forward grad if the base does not. |
| out._set_fw_grad(out_grad, level, /* is_inplace_op */ true); |
| return; |
| } |
| |
| } |
| } |
| |
| out._set_fw_grad(out_grad, level, /* is_inplace_op */ false); |
| } |
| } |
| } |
| |
| optional_variable_list _process_backward_mode_ad( |
| const std::unordered_map<at::TensorImpl*, size_t> &inputs_mapping, |
| const std::unordered_set<at::TensorImpl*> &non_differentiable, |
| const std::unordered_set<at::TensorImpl*> &dirty_inputs, |
| const at::ArrayRef<c10::optional<Variable>> raw_outputs, |
| const std::shared_ptr<Node> &cdata) { |
| |
| |
| int num_outputs = raw_outputs.size(); |
| |
| // Sets the grad_fn and output_nr of an output Variable. |
| auto set_history = [&](Variable& var, uint32_t output_nr, bool is_input, bool is_modified, |
| bool is_differentiable) { |
| if (!is_differentiable) { |
| if (!var.requires_grad()) { |
| return; |
| } |
| // Return detached aliases of inputs, instead of changing their requires_grad |
| // property. |
| if (is_input) { |
| var = var.detach(); |
| } else if (!var.is_view()) { |
| var.detach_(); |
| } |
| // If var is a view of one of the inputs of the custom autograd Function, |
| // we don't detach it in a no_grad block. This is so that we can mimic the |
| // behavior of returning a view from a no_grad block: |
| // x = torch.randn(3, requires_grad=True) |
| // with torch.no_grad(): |
| // y = x.view(-1) |
| // Here, `y` requires_grad (!). |
| } else if (is_modified) { |
| if (var.is_leaf() && var.requires_grad()) { |
| TORCH_CHECK(false, "a leaf Variable that requires grad has been used in an in-place operation."); |
| } |
| // No need to mark as modified Tensors that are not inputs. |
| if (!is_input) { |
| TORCH_WARN("Only input Tensors should be given to ctx.mark_dirty(). If a Tensor is not an input, there" |
| " is no need to pass it to mark_dirty()."); |
| } |
| // If the input is a view, the rebase will need to rewrite the graph and this only works if we have a single |
| // output to this Function. |
| TORCH_CHECK(!(var.is_view() && num_outputs > 1), "If your Function modifies inplace an input that is a view" |
| " of another Tensor, your Function cannot return more than one Tensor. This is not supported" |
| " by the current autograd engine. You should either make sure the input is not a view (using" |
| " .clone() for example) or make your Function only return one Tensor (potentially splitting" |
| " it into two Functions: one doing the inplace that returns a single Tensor and a second one" |
| " that does the other operations). You can ask on the forum https://discuss.pytorch.org/ if" |
| " you need help to do this change."); |
| |
| // If the input was modified, transplant the grad_fn in the graph: |
| // grad_fn <- variable <- self ==> grad_fn <- self <- variable |
| var.mutable_grad().reset(); |
| impl::clear_hooks(var); |
| if (auto grad_acc_fn = impl::try_get_grad_accumulator(var)) { |
| auto grad_acc = dynamic_cast<AccumulateGrad*>(grad_acc_fn.get()); |
| grad_acc->variable.reset(); |
| } |
| if (cdata) { |
| impl::rebase_history(var, {cdata, output_nr}); |
| } |
| } else if (is_input) { |
| // An input has been returned, but it wasn't modified. Return it as a view |
| // so that we can attach a new grad_fn to the Variable. |
| // Run in no_grad mode to mimic the behavior of the forward. |
| { |
| AutoGradMode grad_mode(false); |
| var = var.view_as(var); |
| } |
| impl::set_gradient_edge(var, {cdata, output_nr}); |
| } else if (cdata) { |
| impl::set_gradient_edge(var, {cdata, output_nr}); |
| } |
| }; |
| |
| optional_variable_list outputs; |
| std::unordered_set<at::TensorImpl*> outputs_impl; // For dirty_inputs check |
| outputs.reserve(num_outputs); |
| int num_diff_outputs = 0; |
| |
| |
| for (const auto i : c10::irange(num_outputs)) { |
| // For outputs that are not tensors, put a placeholder undefined input. |
| if (!raw_outputs[i].has_value()) { |
| if (cdata) { |
| auto output_nr = cdata->add_input_metadata(Node::undefined_input()); |
| AT_ASSERT(i == (int)output_nr); |
| } |
| outputs.emplace_back(); |
| continue; |
| } |
| |
| Variable var = raw_outputs[i].value(); |
| |
| auto out_tensor_impl = var.unsafeGetTensorImpl(); |
| bool is_input = inputs_mapping.count(out_tensor_impl) > 0; |
| bool is_modified = dirty_inputs.count(out_tensor_impl) > 0; |
| bool is_differentiable = cdata && non_differentiable.count(out_tensor_impl) == 0 |
| && isDifferentiableType(var.scalar_type()); |
| |
| if (cdata) { |
| auto output_nr = cdata->add_input_metadata(var); |
| AT_ASSERT(i == (int)output_nr); |
| } |
| set_history(var, i, is_input, is_modified, is_differentiable); |
| |
| // For deprecation cycle. Can be removed after 1.6. In the case where we detected a view |
| // in no grad mode during the forward, only warn the user (do not change the flag if we |
| // return and input that is a view as is). |
| // See NOTE [ View + Inplace detection ] for why we replace everything by a warning. |
| if (!(is_input && is_modified) && var.is_view()) { |
| // is_view() => diff_view_meta |
| auto diff_view_meta = impl::get_view_autograd_meta(var); |
| diff_view_meta->set_creation_meta(CreationMeta::IN_CUSTOM_FUNCTION); |
| } |
| |
| if (is_differentiable) { |
| ++num_diff_outputs; |
| } |
| |
| outputs_impl.insert(out_tensor_impl); |
| outputs.emplace_back(var); |
| } |
| |
| // If multiple differentiable outputs are returned, we do not allow views to be modified inplace |
| // See NOTE [ View + Inplace detection ] for more details |
| if (num_diff_outputs > 1) { |
| for (auto& var: outputs) { |
| if (var.has_value()) { |
| auto diff_view_meta = impl::get_view_autograd_meta(var.value()); |
| if (diff_view_meta && diff_view_meta->has_bw_view()) { |
| diff_view_meta->set_creation_meta(CreationMeta::MULTI_OUTPUT_NODE); |
| } |
| } |
| } |
| } |
| |
| // All the modified Tensors must be returned as is for the rewrite to be valid. |
| for (auto& dirty_input : dirty_inputs) { |
| TORCH_CHECK(outputs_impl.count(dirty_input) > 0, |
| "Some elements marked as dirty during the forward method were not returned as output. The" |
| " inputs that are modified inplace must all be outputs of the Function."); |
| } |
| |
| return outputs; |
| } |
| |
| |
| |
| optional_variable_list _wrap_outputs(const variable_list &input_vars, |
| const std::unordered_set<at::TensorImpl*> &non_differentiable, |
| const std::unordered_set<at::TensorImpl*> &dirty_inputs, |
| const at::ArrayRef<c10::optional<Variable>> raw_outputs, |
| const std::shared_ptr<Node> &cdata, |
| _jvp_fn_t jvp_user_function) { |
| |
| std::unordered_map<at::TensorImpl*, size_t> inputs_mapping; |
| inputs_mapping.reserve(input_vars.size()); |
| for (const auto i: c10::irange(input_vars.size())) { |
| inputs_mapping.emplace(input_vars[i].unsafeGetTensorImpl(), i); |
| } |
| |
| auto outputs = _process_backward_mode_ad(inputs_mapping, non_differentiable, dirty_inputs, raw_outputs, cdata); |
| |
| // This must happen after the backward processing as we expect the computations happening here to track |
| // backward mode gradients. |
| _process_forward_mode_AD(input_vars, inputs_mapping, raw_outputs, outputs, non_differentiable, dirty_inputs, jvp_user_function); |
| |
| return outputs; |
| } |
| |
| void check_variable_result(const at::TensorBase& original, const at::TensorBase& result, std::string hook_name) { |
| if (!original.options().type_equal(result.options())) { |
| std::stringstream ss; |
| ss << "hook '" << hook_name << "' has changed the type of value ("; |
| ss << "was " << original.toString() << " got "; |
| ss << result.toString() << ")"; |
| throw std::runtime_error(ss.str()); |
| } |
| |
| if (original.is_cuda() != result.is_cuda()) { |
| std::stringstream ss; |
| ss << "hook '" << hook_name << "' has changed the type of value"; |
| if (original.is_cuda()) { |
| ss << " (was CUDA tensor got CPU tensor)"; |
| } else { |
| ss << " (was CPU tensor got CUDA tensor)"; |
| } |
| throw std::runtime_error(ss.str()); |
| } |
| |
| if (original.sizes().vec() != result.sizes().vec()) { |
| std::stringstream ss; |
| ss << "hook '" << hook_name << "' has changed the size of value"; |
| throw std::runtime_error(ss.str()); |
| } |
| } |
| |
| void AutogradContext::save_for_backward(variable_list to_save) { |
| to_save_ = std::move(to_save); |
| } |
| |
| // The logic for handling saved variables here is the same as python_function.cpp |
| // See _save_variables() and unpack_saved_variables() |
| void AutogradContext::save_variables() { |
| saved_variables_.clear(); |
| auto ptr = grad_fn_.lock(); |
| |
| for (const auto& var : to_save_) { |
| // Allow empty variables to be saved |
| if (var.defined()) { |
| bool is_output = var.grad_fn().get() == ptr.get(); |
| saved_variables_.emplace_back(var, is_output); |
| } else { |
| saved_variables_.emplace_back(); |
| } |
| } |
| to_save_.clear(); |
| } |
| |
| variable_list AutogradContext::get_saved_variables() const { |
| TORCH_CHECK(!has_freed_buffers_, ERR_BACKWARD_TWICE); |
| variable_list saved; |
| saved.reserve(saved_variables_.size()); |
| auto ptr = grad_fn_.lock(); |
| TORCH_INTERNAL_ASSERT(ptr); |
| for (auto& var : saved_variables_) { |
| saved.push_back(var.unpack(ptr)); |
| } |
| return saved; |
| } |
| |
| void AutogradContext::mark_dirty(const variable_list &inputs) { |
| dirty_inputs_.clear(); |
| dirty_inputs_.reserve(inputs.size()); |
| for(auto& var : inputs) { |
| dirty_inputs_.insert(var.unsafeGetTensorImpl()); |
| } |
| } |
| |
| void AutogradContext::mark_non_differentiable(const variable_list &outputs) { |
| non_differentiable_.clear(); |
| non_differentiable_.reserve(outputs.size()); |
| for(auto& var : outputs) { |
| non_differentiable_.insert(var.unsafeGetTensorImpl()); |
| } |
| } |
| |
| void AutogradContext::set_materialize_grads(bool value) { |
| materialize_grads_ = value; |
| } |
| |
| const std::unordered_set<at::TensorImpl*>& AutogradContext::get_and_bump_dirty() const { |
| for (auto& var : dirty_inputs_) { |
| var->bump_version(); |
| } |
| return dirty_inputs_; |
| } |
| |
| const std::unordered_set<at::TensorImpl*>& AutogradContext::get_non_differentiable() const { |
| return non_differentiable_; |
| } |
| }} // namespace torch::autograd |