| import math |
| import torch |
| from .optimizer import Optimizer |
| |
| |
| class Adam(Optimizer): |
| """Implements Adam algorithm. |
| |
| It has been proposed in `Adam: A Method for Stochastic Optimization`_. |
| |
| Arguments: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-3) |
| betas (Tuple[float, float], optional): coefficients used for computing |
| running averages of gradient and its square (default: (0.9, 0.999)) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
| algorithm from the paper `On the Convergence of Adam and Beyond`_ |
| |
| .. _Adam\: A Method for Stochastic Optimization: |
| https://arxiv.org/abs/1412.6980 |
| .. _On the Convergence of Adam and Beyond: |
| https://openreview.net/forum?id=ryQu7f-RZ |
| """ |
| |
| def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, |
| weight_decay=0, amsgrad=False): |
| defaults = dict(lr=lr, betas=betas, eps=eps, |
| weight_decay=weight_decay, amsgrad=amsgrad) |
| super(Adam, self).__init__(params, defaults) |
| |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Arguments: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| loss = closure() |
| |
| for group in self.param_groups: |
| for p in group['params']: |
| if p.grad is None: |
| continue |
| grad = p.grad.data |
| if grad.is_sparse: |
| raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') |
| amsgrad = group['amsgrad'] |
| |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| # Exponential moving average of gradient values |
| state['exp_avg'] = torch.zeros_like(p.data) |
| # Exponential moving average of squared gradient values |
| state['exp_avg_sq'] = torch.zeros_like(p.data) |
| if amsgrad: |
| # Maintains max of all exp. moving avg. of sq. grad. values |
| state['max_exp_avg_sq'] = torch.zeros_like(p.data) |
| |
| exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
| if amsgrad: |
| max_exp_avg_sq = state['max_exp_avg_sq'] |
| beta1, beta2 = group['betas'] |
| |
| state['step'] += 1 |
| |
| if group['weight_decay'] != 0: |
| grad = grad.add(group['weight_decay'], p.data) |
| |
| # Decay the first and second moment running average coefficient |
| exp_avg.mul_(beta1).add_(1 - beta1, grad) |
| exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
| if amsgrad: |
| # Maintains the maximum of all 2nd moment running avg. till now |
| torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) |
| # Use the max. for normalizing running avg. of gradient |
| denom = max_exp_avg_sq.sqrt().add_(group['eps']) |
| else: |
| denom = exp_avg_sq.sqrt().add_(group['eps']) |
| |
| bias_correction1 = 1 - beta1 ** state['step'] |
| bias_correction2 = 1 - beta2 ** state['step'] |
| step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 |
| |
| p.data.addcdiv_(-step_size, exp_avg, denom) |
| |
| return loss |