| import weakref |
| from typing import Any, Dict, Iterable, List, Optional, Set, Tuple |
| |
| import torch |
| import torch.nn as nn |
| |
| from torch.nn.parallel import DistributedDataParallel |
| |
| from .contract import _get_registry, contract |
| |
| _ROOT_MODULE_PREFIX = "" |
| |
| |
| @contract() |
| def replicate( |
| module: nn.Module, # NOTE: contract now supports single module only |
| ignored_modules: Optional[Iterable[torch.nn.Module]] = None, |
| **kwargs, |
| ) -> nn.Module: |
| r"""Replicates a module |
| |
| Args: |
| module (torch.nn.Module): module to replicate |
| |
| Example:: |
| >>> # xdoctest: +REQUIRES(module:torch._C._distributed_c10d) |
| >>> module = nn.Linear(3, 3) |
| >>> replicate(module) |
| """ |
| torch._C._log_api_usage_once("torch.distributed.replicate") |
| if "device_id" in kwargs: |
| if not isinstance(kwargs["device_id"], (int, torch.device)): |
| raise RuntimeError( |
| f"Expected device_id to be int or torch.device, but got {type(kwargs['device_id'])}" |
| ) |
| _ReplicateState(ignored_modules=ignored_modules).mark_module(module, **kwargs) |
| return module |
| |
| |
| def _is_fully_sharded(module: nn.Module) -> bool: |
| r"""Check if module is marked with fully_shard.""" |
| return "fully_shard" in _get_registry(module) |
| |
| |
| class _ReplicateState: |
| def __init__(self, ignored_modules: Optional[Iterable[torch.nn.Module]]) -> None: |
| self.module: Optional[nn.Module] = None |
| self.has_initialized: bool = False |
| self._param_list: nn.ParameterList = nn.ParameterList() |
| self.kwargs: dict = {} |
| self.ignored_modules: Set[torch.nn.Module] = ( |
| set(ignored_modules) if ignored_modules is not None else set() |
| ) |
| self.ignored_params: Set[torch.nn.Parameter] = { |
| p for m in self.ignored_modules for p in m.parameters() |
| } |
| # Only used for testing |
| self._param_names: List[str] = [] |
| |
| def mark_module(self, module: nn.Module, **kwargs) -> None: |
| if _is_fully_sharded(module): |
| raise AssertionError( |
| "Cannot apply `replicate()` on a Module already managed by `fully_shard`" |
| ) |
| self.module = module |
| replicate.state(module)._params_collected = False |
| module.register_forward_pre_hook(self.forward_pre_hook, with_kwargs=True) |
| # TODO(@yhcharles): fix type error |
| module.register_forward_hook(self.forward_post_hook) # type: ignore[arg-type] |
| self.kwargs = kwargs |
| |
| def _collect_params( |
| self, module: nn.Module, prefix: str = _ROOT_MODULE_PREFIX |
| ) -> None: |
| # skip if managed by fully_sharded API |
| if _is_fully_sharded(module): |
| return |
| |
| if module in self.ignored_modules: |
| return # if module A is ignored, all of A's children are also ignored. |
| |
| recurse_prefix = ( |
| f"{prefix}." if prefix != _ROOT_MODULE_PREFIX else _ROOT_MODULE_PREFIX |
| ) |
| |
| for n, p in module.named_parameters(recurse=False): |
| if p not in self.ignored_params: |
| self._param_list.append(p) |
| self._param_names.append(f"{recurse_prefix}{n}") |
| |
| for name, child_module in module.named_children(): |
| self._collect_params(module=child_module, prefix=f"{recurse_prefix}{name}") |
| |
| def init_helper(self) -> None: |
| if self.has_initialized: |
| return |
| |
| self.has_initialized = True |
| |
| self._collect_params(self.module) # type: ignore[arg-type] |
| # Only saved for testing |
| replicate.state(self.module)._replicate_param_names = self._param_names |
| if "device_id" in self.kwargs: |
| # replicate() supports a small usability enhancement where |
| # user can pass in device_id as a Union[int, torch.device] even for |
| # CPU devices so users don't have to change code for CPU/GPU runs. |
| # We derive the right device_ids to feed into DDP to support this. |
| if self.kwargs["device_id"] is not None: |
| device_id = self.kwargs["device_id"] |
| # Convert to device_ids that DDP expects. |
| if isinstance(device_id, torch.device) and device_id.type == "cpu": |
| # CPU modules receive device_ids None |
| self.kwargs["device_ids"] = None |
| else: |
| # GPU modules expect device_ids=[cuda_device] |
| self.kwargs["device_ids"] = [device_id] |
| else: |
| self.kwargs["device_ids"] = None |
| self.kwargs.pop("device_id") |
| |
| self._ddp = DistributedDataParallel(self._param_list, **self.kwargs) |
| # Weakref to the DDP instance is currently only used for testing. |
| replicate.state(self.module)._ddp_weakref = weakref.ref(self._ddp) |
| |
| def forward_pre_hook( |
| self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any] |
| ) -> Any: |
| self.init_helper() |
| args, kwargs = self._ddp._pre_forward(*args, **kwargs) |
| return args, kwargs |
| |
| def forward_post_hook( |
| self, |
| module: nn.Module, |
| input: Tuple[torch.Tensor], |
| output: torch.Tensor, |
| ) -> torch.Tensor: |
| return self._ddp._post_forward(output) |