blob: 48c3dd2b07c302337872605779a9732d5205855d [file] [log] [blame]
// Implements the math functions for CPU.
#include <cub/block/block_reduce.cuh>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/conversions.h"
#include "caffe2/utils/math.h"
#include <cub/cub.cuh>
#if THRUST_VERSION >= 100800
#define THRUST_SUPPORTS_PER_THREAD
#endif // THRUST_VERSION >= 100800
namespace caffe2 {
namespace math {
#define DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(T, Funcname, function) \
__global__ \
void _Kernel_##T##_##Funcname(const int N, const T* x, T* y) { \
CUDA_1D_KERNEL_LOOP(i, N) { \
y[i] = function(x[i]); \
} \
} \
template <> \
void Funcname<T, CUDAContext>( \
const int N, const T* x, T* y, \
CUDAContext* context) { \
_Kernel_##T##_##Funcname<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, \
0, context->cuda_stream()>>>( \
N, x, y); \
}
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Exp, expf);
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Log, logf);
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Cos, cosf);
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sin, sinf);
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Abs, fabsf);
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqrt, sqrtf);
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, InvSqrt, rsqrtf);
__device__ float cuda_sqrf(const float x) { return x * x; }
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqr, cuda_sqrf);
#undef DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION
#define DELEGATE_SINCOS_CUDA_FUNCTION(T) \
__global__ void _Kernel_##T##_##SinCos( \
const int N, const T* x, T* ys, T* yc) { \
CUDA_1D_KERNEL_LOOP(i, N) { \
sincos(x[i], ys + i, yc + i); \
} \
} \
template <> \
void SinCos<T, CUDAContext>( \
const int N, const T* x, T* ys, T* yc, CUDAContext* context) { \
_Kernel_##T##_##SinCos<<< \
CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, x, ys, yc); \
}
DELEGATE_SINCOS_CUDA_FUNCTION(float)
DELEGATE_SINCOS_CUDA_FUNCTION(double)
#undef DELEGATE_SINCOS_CUDA_FUNCTION
#define DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(T, Funcname, expr) \
__global__ void _Kernel_##T##_##Funcname( \
const int N, const T* a, const T* b, T* y) { \
CUDA_1D_KERNEL_LOOP(i, N) { \
float r = convert::To<T, float>(a[i]) expr convert::To<T, float>(b[i]); \
y[i] = convert::To<float, T>(r); \
} \
} \
template <> \
void Funcname<T, CUDAContext>( \
const int N, const T* a, const T* b, T* y, CUDAContext* context) { \
_Kernel_##T##_##Funcname<<< \
CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, a, b, y); \
}
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Add, +);
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Sub, -);
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Mul, *);
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Div, /);
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Add, +);
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Sub, -);
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Mul, *);
DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Div, /);
#undef DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION
#define DELEGATE_SIMPLE_CUDA_BINARY_PREFIX_FUNCTION(T, Funcname, func) \
__global__ void _Kernel_##T##_##Funcname( \
const int N, const T* a, const T* b, T* y) { \
CUDA_1D_KERNEL_LOOP(i, N) { \
float r = \
func(convert::To<T, float>(a[i]), convert::To<T, float>(b[i])); \
y[i] = convert::To<float, T>(r); \
} \
} \
template <> \
void Funcname<T, CUDAContext>( \
const int N, const T* a, const T* b, T* y, CUDAContext* context) { \
_Kernel_##T##_##Funcname<<< \
CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, a, b, y); \
}
DELEGATE_SIMPLE_CUDA_BINARY_PREFIX_FUNCTION(float, ElemwiseMax, fmaxf);
#undef DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION
#define DELEGATE_REDUCTION_FUNCTION(T, Funcname, func) \
template <> \
void Funcname<T, CUDAContext>( \
const int N, \
const T* src, \
T* dst, \
Tensor<CUDAContext>* scratch_ptr, \
CUDAContext* context) { \
size_t memRequired = 0; \
cub::DeviceReduce::func( \
nullptr, memRequired, src, dst, N, context->cuda_stream()); \
auto buffer_size = \
static_cast<TIndex>((memRequired + sizeof(T) - 1) / sizeof(T)); \
scratch_ptr->Resize(std::vector<TIndex>{buffer_size}); \
cub::DeviceReduce::func( \
static_cast<void*>(scratch_ptr->mutable_data<T>()), \
memRequired, \
src, \
dst, \
N, \
context->cuda_stream()); \
}
DELEGATE_REDUCTION_FUNCTION(float, ReduceMin, Min)
DELEGATE_REDUCTION_FUNCTION(float, ReduceMax, Max)
#undef DELEGATE_REDUCTION_FUNCTION
// Caffe2 gemm provides a simpler interface to the gemm functions, with the
// limitation that the data has to be contiguous in memory.
template <>
void Gemm<float, CUDAContext>(
const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const float* B,
const float beta,
float* C,
CUDAContext* context,
TensorProto::DataType math_type) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
int lda = (TransA == CblasNoTrans) ? K : M;
int ldb = (TransB == CblasNoTrans) ? N : K;
cublasOperation_t cuTransA =
(TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
CUBLAS_ENFORCE(cublasSgemm(
context->cublas_handle(),
cuTransB,
cuTransA,
N,
M,
K,
&alpha,
B,
ldb,
A,
lda,
&beta,
C,
N));
}
template <>
void Gemm<float16, CUDAContext>(
const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const float alpha,
const float16* A,
const float16* B,
const float beta,
float16* C,
CUDAContext* context,
TensorProto::DataType math_type) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
int lda = (TransA == CblasNoTrans) ? K : M;
int ldb = (TransB == CblasNoTrans) ? N : K;
cublasOperation_t cuTransA =
(TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
if (math_type == TensorProto_DataType_FLOAT) {
CUBLAS_CHECK(cublasSgemmEx(
context->cublas_handle(),
cuTransB,
cuTransA,
N,
M,
K,
&alpha,
B,
CUDA_R_16F,
ldb,
A,
CUDA_R_16F,
lda,
&beta,
C,
CUDA_R_16F,
N));
} else if (math_type == TensorProto_DataType_FLOAT16) {
// convert alpha, beta from float -> __half
auto alpha_fp16 = convert::floatToHalf(alpha);
auto beta_fp16 = convert::floatToHalf(beta);
// call cublasHgemm
CUBLAS_CHECK(cublasHgemm(
context->cublas_handle(),
cuTransB,
cuTransA,
N,
M,
K,
&alpha_fp16,
(const __half*)B,
ldb,
(const __half*)A,
lda,
&beta_fp16,
(__half*)C,
N));
} else {
// fail
CAFFE_THROW("Unsupported math type");
}
}
#if CUDA_VERSION >= 9000
// No change, but required. Defer to default CUDA engine
template <>
void Gemm<float, CUDAContext, TensorCoreEngine>(
const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const float* B,
const float beta,
float* C,
CUDAContext* context,
TensorProto::DataType math_type) {
return Gemm<float,CUDAContext>(TransA,
TransB,
M,
N,
K,
alpha,
A,
B,
beta,
C,
context,
math_type);
}
template <>
void Gemm<float16, CUDAContext, TensorCoreEngine>(
const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const float alpha,
const float16* A,
const float16* B,
const float beta,
float16* C,
CUDAContext* context,
TensorProto::DataType math_type) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
int lda = (TransA == CblasNoTrans) ? K : M;
int ldb = (TransB == CblasNoTrans) ? N : K;
cublasOperation_t cuTransA =
(TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
// enable TensorCore for this call on this handle
if (TensorCoreAvailable()) {
CUBLAS_ENFORCE(cublasSetMathMode(
context->cublas_handle(),
CUBLAS_TENSOR_OP_MATH));
}
CUBLAS_CHECK(cublasGemmEx(
context->cublas_handle(),
cuTransB,
cuTransA,
N,
M,
K,
&alpha,
B,
CUDA_R_16F,
ldb,
A,
CUDA_R_16F,
lda,
&beta,
C,
CUDA_R_16F,
N,
CUDA_R_32F,
CUBLAS_GEMM_DFALT_TENSOR_OP));
// Now disable TensorCore math for subsequent calls to this handle
if (TensorCoreAvailable()) {
CUBLAS_ENFORCE(cublasSetMathMode(
context->cublas_handle(),
CUBLAS_DEFAULT_MATH));
}
}
#endif // CUDA_VERSION >= 9000
template <>
void GemmEx<float, CUDAContext>(
const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const int lda,
const float* B,
const int ldb,
const float beta,
float* C,
const int ldc,
CUDAContext* context) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
cublasOperation_t cuTransA =
(TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
CUBLAS_ENFORCE(cublasSgemm(
context->cublas_handle(),
cuTransB,
cuTransA,
N,
M,
K,
&alpha,
B,
ldb,
A,
lda,
&beta,
C,
ldc));
}
template <>
void Gemv<float, CUDAContext>(
const CBLAS_TRANSPOSE TransA,
const int M,
const int N,
const float alpha,
const float* A,
const float* x,
const float beta,
float* y,
CUDAContext* context,
TensorProto::DataType math_type) {
cublasOperation_t cuTransA =
(TransA == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N;
CUBLAS_ENFORCE(cublasSgemv(
context->cublas_handle(),
cuTransA,
N,
M,
&alpha,
A,
N,
x,
1,
&beta,
y,
1));
}
// Batched Add variants
namespace {
template <typename T>
__global__ void AddStripedBatchKernel(
const int N,
const T* first,
T* Y,
const int stripe,
const int batch) {
for (int j = 0; j < batch; j++) {
const T* x = first + j * stripe;
CUDA_1D_KERNEL_LOOP(i, N) {
Y[i] += x[i];
}
}
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(T) \
template <> \
void AddStripedBatch<T, CUDAContext>( \
const int N, \
const T* first, \
T* Y, \
const int stripe, \
const int batch, \
CUDAContext* context) { \
AddStripedBatchKernel<T><<< \
CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, first, Y, stripe, batch); \
}
CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(float);
CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(double);
#undef CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH
template <>
void Gemv<float16, CUDAContext>(
const CBLAS_TRANSPOSE TransA,
const int M,
const int N,
const float alpha,
const float16* A,
const float16* x,
const float beta,
float16* y,
CUDAContext* context,
TensorProto::DataType math_type) {
cublasOperation_t cuTransA =
(TransA == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N;
// sort out what we need to call cublasSgemmEx / cublasHgemm
int m = (cuTransA == CUBLAS_OP_N) ? N : M;
int k = (cuTransA == CUBLAS_OP_N) ? M : N;
int LDA = (cuTransA == CUBLAS_OP_N) ? m : k;
int LDC = m;
if (math_type == TensorProto_DataType_FLOAT) {
CUBLAS_CHECK(cublasSgemmEx(
context->cublas_handle(),
cuTransA,
CUBLAS_OP_N,
m,
1,
k,
&alpha,
A,
CUDA_R_16F,
LDA,
x,
CUDA_R_16F,
k,
&beta,
y,
CUDA_R_16F,
LDC));
} else if (math_type == TensorProto_DataType_FLOAT16) {
auto alpha_fp16 = convert::floatToHalf(alpha);
auto beta_fp16 = convert::floatToHalf(beta);
CUBLAS_CHECK(cublasHgemm(
context->cublas_handle(),
cuTransA,
CUBLAS_OP_N,
m,
1,
k,
&alpha_fp16,
(const __half*)A,
LDA,
(const __half*)x,
k,
&beta_fp16,
(__half*)y,
LDC));
} else {
// fail
CAFFE_THROW("Unsupported math type");
}
}
namespace {
template <typename T>
__global__ void SetKernel(const int N, const T alpha, T* Y) {
CUDA_1D_KERNEL_LOOP(i, N) {
Y[i] = alpha;
}
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_SET(T) \
template <> \
void Set<T, CUDAContext>(const TIndex N, const T alpha, T *Y, \
CUDAContext* context) { \
SetKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, \
0, context->cuda_stream()>>>(N, alpha, Y); \
}
CAFFE2_SPECIALIZED_CUDA_SET(float);
CAFFE2_SPECIALIZED_CUDA_SET(double);
CAFFE2_SPECIALIZED_CUDA_SET(bool);
CAFFE2_SPECIALIZED_CUDA_SET(int8_t);
CAFFE2_SPECIALIZED_CUDA_SET(int16_t);
CAFFE2_SPECIALIZED_CUDA_SET(float16);
CAFFE2_SPECIALIZED_CUDA_SET(int);
CAFFE2_SPECIALIZED_CUDA_SET(int64_t);
CAFFE2_SPECIALIZED_CUDA_SET(char);
CAFFE2_SPECIALIZED_CUDA_SET(uint8_t);
CAFFE2_SPECIALIZED_CUDA_SET(uint16_t);
#undef CAFFE2_SPECIALIZED_CUDA_SET
namespace {
template <typename T>
__global__ void
UniformShift(const int N, const float min, const float max, T* x) {
float scale = max - min;
CUDA_1D_KERNEL_LOOP(i, N) {
x[i] = convert::To<float, T>(convert::To<T, float>(x[i]) * scale + min);
}
}
__global__ void UniformIntFit(const int N, const int min, const int max,
unsigned int* x) {
int* x_int = reinterpret_cast<int*>(x);
int range = (max - min + 1);
CUDA_1D_KERNEL_LOOP(i, N) {
x_int[i] = min + static_cast<int>(x[i] % range);
}
}
} // namespace
template <>
void RandUniform<float, CUDAContext>(
const int n, const float min, const float max, float* r,
CUDAContext* context) {
CURAND_ENFORCE(curandGenerateUniform(context->curand_generator(), r, n));
UniformShift<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, context->cuda_stream()>>>(n, min, max, r);
}
template <>
void RandUniform<double, CUDAContext>(
const int n, const double min, const double max, double* r,
CUDAContext* context) {
CURAND_ENFORCE(
curandGenerateUniformDouble(context->curand_generator(), r, n));
UniformShift<double><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, context->cuda_stream()>>>(n, min, max, r);
}
template <>
void RandUniform<int, CUDAContext>(
const int n, const int min, const int max, int* r,
CUDAContext* context) {
CURAND_ENFORCE(curandGenerate(
context->curand_generator(), reinterpret_cast<unsigned int*>(r), n));
UniformIntFit<<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, context->cuda_stream()>>>(
n, min, max, reinterpret_cast<unsigned int*>(r));
}
template <typename T>
int HandleOddLengthRandGaussian(
const int n,
const T mean,
const T std,
T* r,
CUDAContext* context) {
if (n % 2 == 1) {
std::default_random_engine generator;
std::normal_distribution<T> distribution(mean, std);
const T random_value = distribution(generator);
math::Set<T, CUDAContext>(1, random_value, r + (n - 1), context);
return n - 1;
}
return n;
}
template <>
void RandGaussian<float, CUDAContext>(
const int n, const float mean, const float std, float* r,
CUDAContext* context) {
// If n is odd, we add a random Gaussian value at the end manually
// and generate n-1 random values using curandGenerateNormal.
// curandGenerateNormal requires n to be even.
const int even_n =
HandleOddLengthRandGaussian<float>(n, mean, std, r, context);
CURAND_ENFORCE(
curandGenerateNormal(context->curand_generator(), r, even_n, mean, std));
}
template <>
void RandGaussian<double, CUDAContext>(
const int n, const double mean, const double std, double* r,
CUDAContext* context) {
const int even_n =
HandleOddLengthRandGaussian<double>(n, mean, std, r, context);
CURAND_ENFORCE(curandGenerateNormalDouble(
context->curand_generator(), r, even_n, mean, std));
}
template<>
void Dot<float, CUDAContext>(
const int n, const float* a, const float* b, float* y,
CUDAContext* context) {
float result;
CUBLAS_ENFORCE(cublasSdot(context->cublas_handle(), n, a, 1, b, 1, &result));
context->Copy<float, CPUContext, CUDAContext>(1, &result, y);
}
template <>
void Dot<float16, CUDAContext>(
const int n,
const float16* a,
const float16* b,
float16* y,
CUDAContext* context) {
float16 result;
// execute with 32-bit math
CUBLAS_CHECK(cublasDotEx(
context->cublas_handle(),
n,
a,
CUDA_R_16F,
1,
b,
CUDA_R_16F,
1,
&result,
CUDA_R_16F,
CUDA_R_32F));
context->Copy<float16, CPUContext, CUDAContext>(1, &result, y);
}
// A previous version of caffe2 used Thrust but it turns out that thrust
// reduction has an implicit scratch space allocation and deallocation, which
// may interfere with NCCL and create a deadlock. Hence we are using a custom
// reduction here.
#define SUM_KERNEL_NTHREADS 128
template <typename T>
__global__ void SumKernel(const int N, const T* X, T* Y, bool square) {
const int idx = threadIdx.x;
__shared__ float reduction_buffer[SUM_KERNEL_NTHREADS];
reduction_buffer[idx] = 0;
// A multilevel reduction.
// N -> 128
if (!square) {
for (int i = idx; i < N; i += SUM_KERNEL_NTHREADS) {
reduction_buffer[idx] += convert::To<T, float>(X[i]);
}
} else {
for (int i = idx; i < N; i += SUM_KERNEL_NTHREADS) {
float Xi = convert::To<T, float>(X[i]);
reduction_buffer[idx] += Xi * Xi;
}
}
__syncthreads();
// 128 -> 32
if (idx < 32) {
reduction_buffer[idx] +=
reduction_buffer[idx + 32] +
reduction_buffer[idx + 64] +
reduction_buffer[idx + 96];
}
__syncthreads();
// 32 -> 1
if (idx == 0) {
float tmp = 0;
for (int i = 0; i < 32; ++i) {
tmp += reduction_buffer[i];
}
*Y = convert::To<float, T>(tmp);
}
}
// According to the benchmarks script
// caffe2/caffe2/experiments/python/device_reduce_sum_bench.py,
// device reduce is slower for N <= 10000.
#define DEVICE_REDUCE_SIZE_THRESHOLD 10000
namespace {
template <typename T>
__global__ void SumConvertKernel(float* sum, T* dest) {
*dest = convert::To<float, T>(*sum);
}
template <typename FloatIterT>
void SumFloatIter(
const int N,
FloatIterT it,
float*& dest,
CUDAContext* context,
Tensor<CUDAContext>* scratch_ptr) {
size_t memRequired = 0;
cub::DeviceReduce::Sum(
nullptr, memRequired, it, dest, N, context->cuda_stream());
auto buffer_size =
static_cast<TIndex>((memRequired + sizeof(float) - 1) / sizeof(float));
if (!dest) {
// allocate one more float at the end of scratch for dest
scratch_ptr->Resize(std::vector<TIndex>{buffer_size + 1});
dest = scratch_ptr->template mutable_data<float>() + buffer_size;
} else {
scratch_ptr->Resize(std::vector<TIndex>{buffer_size});
}
cub::DeviceReduce::Sum(
static_cast<void*>(scratch_ptr->template mutable_data<float>()),
memRequired,
it,
dest,
N,
context->cuda_stream());
}
} // namespace
template <>
void Sum<float, CUDAContext>(
const int N,
const float* x,
float* y,
CUDAContext* context,
Tensor<CUDAContext>* scratch_ptr) {
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) {
SumFloatIter(N, x, y, context, scratch_ptr);
} else {
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>(
N, x, y, false);
}
}
namespace {
template <typename T>
struct FloatTransform {
inline __host__ __device__ float operator()(const T v) const {
return convert::To<T, float>(v);
}
};
} // namespace
#define CAFFE2_MATH_SUM_FUNC(T) \
template <> \
void Sum<T, CUDAContext>( \
const int N, \
const T* x, \
T* y, \
CUDAContext* context, \
Tensor<CUDAContext>* scratch_ptr) { \
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { \
FloatTransform<T> transform; \
cub::TransformInputIterator<float, FloatTransform<T>, const T*> it( \
x, transform); \
float* sum = nullptr; \
SumFloatIter(N, it, sum, context, scratch_ptr); \
SumConvertKernel<<<1, 1, 0, context->cuda_stream()>>>(sum, y); \
} else { \
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( \
N, x, y, false); \
} \
}
CAFFE2_MATH_SUM_FUNC(float16)
#undef CAFFE2_MATH_SUM_FUNC
namespace {
template <typename T>
struct SqrTransform {
inline __host__ __device__ T operator()(const T v) const {
return v * v;
}
};
} // namespace
template <>
void SumSqr<float, CUDAContext>(
const int N,
const float* x,
float* y,
CUDAContext* context,
Tensor<CUDAContext>* scratch_ptr) {
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) {
SqrTransform<float> transform;
cub::TransformInputIterator<float, SqrTransform<float>, const float*> it(
x, transform);
SumFloatIter(N, it, y, context, scratch_ptr);
} else {
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>(
N, x, y, true);
}
}
#define CAFFE2_MATH_SUMSQR_FUNC(T) \
template <> \
void SumSqr<T, CUDAContext>( \
const int N, \
const T* x, \
T* y, \
CUDAContext* context, \
Tensor<CUDAContext>* scratch_ptr) { \
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { \
FloatTransform<T> float_transform; \
cub::TransformInputIterator<float, FloatTransform<T>, const T*> \
float_it(x, float_transform); \
SqrTransform<float> sqr_transform; \
cub::TransformInputIterator< \
float, \
SqrTransform<float>, \
decltype(float_it)> \
it(float_it, sqr_transform); \
float* sum = nullptr; \
SumFloatIter(N, it, sum, context, scratch_ptr); \
SumConvertKernel<<<1, 1, 0, context->cuda_stream()>>>(sum, y); \
} else { \
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( \
N, x, y, true); \
} \
}
CAFFE2_MATH_SUMSQR_FUNC(float16)
#undef CAFFE2_MATH_SUMSQR_FUNC
#undef DEVICE_REDUCE_SIZE_THRESHOLD
namespace {
template <typename T>
__global__ void SelectKernel(
const int N, const int D, const T* x, const int* idx, T* y) {
CUDA_1D_KERNEL_LOOP(i, N) {
y[i] = x[i * D + idx[i]];
}
}
} // namespace
template <>
void Select<float, CUDAContext>(
const int N, const int D, const float* x, const int* idx, float* y,
CUDAContext* context) {
SelectKernel<float><<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS,
0, context->cuda_stream()>>>(N, D, x, idx, y);
}
template <>
void Select<float16, CUDAContext>(
const int N,
const int D,
const float16* x,
const int* idx,
float16* y,
CUDAContext* context) {
SelectKernel<float16><<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, D, x, idx, y);
}
namespace {
template <typename T>
__global__ void ScaleKernel(const int n, const float alpha, const T* x, T* y) {
CUDA_1D_KERNEL_LOOP(i, n) {
// y[i] = convert::To<float,T>(convert::To<T, float>(x[i]) * alpha);
y[i] = convert::Get<T>(convert::Get<float>(x[i]) * alpha);
}
}
template <typename T>
__global__ void
ScaleKernelDeviceAlpha(const int n, const float* alpha, const T* x, T* y) {
CUDA_1D_KERNEL_LOOP(i, n) {
y[i] = x[i] * (*alpha);
}
}
template <typename T>
__global__ void PowKernel(const int n, const T* x, const T exponent, T* y) {
CUDA_1D_KERNEL_LOOP(i, n) {
y[i] = powf(x[i], exponent);
}
}
// fp16 specialization
template <>
__global__ void ScaleKernelDeviceAlpha(
const int n,
const float* alpha,
const float16* x,
float16* y) {
CUDA_1D_KERNEL_LOOP(i, n) {
y[i] = convert::To<float, float16>(
convert::To<float16, float>(x[i]) * (*alpha));
}
}
} // namespace
template <>
void Powx<float, CUDAContext>(
const int N,
const float* a,
const float b,
float* y,
CUDAContext* context) {
PowKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, a, b, y);
}
template <>
void Scale<float, CUDAContext>(
const int n,
const float alpha,
const float* x,
float* y,
CUDAContext* context) {
ScaleKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, context->cuda_stream()>>>(n, alpha, x, y);
}
template <>
void Scale<float16, CUDAContext>(
const int n,
const float alpha,
const float16* x,
float16* y,
CUDAContext* context) {
ScaleKernel<float16><<<
CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(n, alpha, x, y);
}
template <>
void Scale<float, CUDAContext>(
const int n, const float* alpha, const float *x, float* y,
CUDAContext* context) {
ScaleKernelDeviceAlpha<float><<<
CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(
n, alpha, x, y);
}
template <>
void Scale<float16, CUDAContext>(
const int n,
const float* alpha,
const float16* x,
float16* y,
CUDAContext* context) {
ScaleKernelDeviceAlpha<float16><<<
CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(n, alpha, x, y);
}
template <>
void Axpy<float, CUDAContext>(
const int N,
const float alpha,
const float* X,
float* Y,
CUDAContext* context) {
CUBLAS_ENFORCE(cublasSaxpy(context->cublas_handle(), N, &alpha, X, 1, Y, 1));
}
template <>
void Axpy<double, CUDAContext>(
const int N,
const float alpha,
const double* X,
double* Y,
CUDAContext* context) {
double alpha_d{alpha};
CUBLAS_ENFORCE(
cublasDaxpy(context->cublas_handle(), N, &alpha_d, X, 1, Y, 1));
}
template <>
void Axpy<float16, CUDAContext>(
const int N,
const float alpha,
const float16* X,
float16* Y,
CUDAContext* context) {
CUBLAS_CHECK(cublasAxpyEx(
context->cublas_handle(),
N,
&alpha,
CUDA_R_16F,
X,
CUDA_R_16F,
1,
Y,
CUDA_R_16F,
1,
CUDA_R_32F));
}
namespace {
template <typename T>
__global__ void AxpyKernel(const int n, const float* a, const T* x, T* y) {
CUDA_1D_KERNEL_LOOP(index, n) {
y[index] = convert::Get<T>(
convert::Get<float>(x[index]) * (*a) + convert::Get<float>(y[index]));
}
}
} // namespace
template <>
void Axpy<float, CUDAContext>(
const int n, const float* alpha, const float* X,
float* Y, CUDAContext* context) {
AxpyKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, context->cuda_stream()>>>(n, alpha, X, Y);
}
template <>
void Axpy<float16, CUDAContext>(
const int n,
const float* alpha,
const float16* X,
float16* Y,
CUDAContext* context) {
AxpyKernel<float16><<<
CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(n, alpha, X, Y);
}
namespace {
template <typename T>
__global__ void AxpbyKernel(const int n, const T a, const T* x,
const T b, T* y) {
CUDA_1D_KERNEL_LOOP(index, n) {
y[index] = x[index] * a + y[index] * b;
}
}
} // namespace
template <>
void Axpby<float, CUDAContext>(
const int n, const float a, const float* x, const float b, float* y,
CUDAContext* context) {
AxpbyKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS,
0, context->cuda_stream()>>>(n, a, x, b, y);
}
namespace {
template <typename T>
__global__ void im2col_gpu_kernel_nchw(const int n, const T* data_im,
const int height, const int width, const int kernel_h, const int kernel_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l,
const int stride_h, const int stride_w,
const int height_col, const int width_col,
T* data_col) {
CUDA_1D_KERNEL_LOOP(index, n) {
int w_out = index % width_col;
int h_index = index / width_col;
int h_out = h_index % height_col;
int channel_in = h_index / height_col;
int channel_out = channel_in * kernel_h * kernel_w;
int h_in = h_out * stride_h - pad_t;
int w_in = w_out * stride_w - pad_l;
T* data_col_ptr = data_col;
data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out;
const T* data_im_ptr = data_im;
data_im_ptr += (channel_in * height + h_in) * width + w_in;
for (int i = 0; i < kernel_h; ++i) {
for (int j = 0; j < kernel_w; ++j) {
int h = h_in + i * dilation_h;
int w = w_in + j * dilation_w;
*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
data_im_ptr[i * dilation_h * width + j * dilation_w] : 0;
data_col_ptr += height_col * width_col;
}
}
}
}
template <typename T>
__global__ void im2col_gpu_kernel_nhwc(const int n, const T* data_im,
const int height, const int width, const int kernel_h, const int kernel_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l,
const int stride_h, const int stride_w,
const int width_col, const int channels,
T* data_col) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
CUDA_1D_KERNEL_LOOP(index, n) {
int channel_in = index % channels;
int w_out = index / channels % width_col;
int h_out = index / channels / width_col;
int h_in = h_out * stride_h - pad_t;
int w_in = w_out * stride_w - pad_l;
T* local_data_col = data_col +
((h_out * width_col) + w_out) * channels * kernel_h * kernel_w
+ channel_in;
for (int i = 0; i < dkernel_h; i += dilation_h) {
int h = h_in + i;
for (int j = 0; j < dkernel_w; j += dilation_w) {
int w = w_in + j;
*local_data_col = (h >= 0 && w >= 0 && h < height && w < width) ?
data_im[(h * width + w) * channels + channel_in] : 0;
local_data_col += channels;
}
}
}
}
template <typename T>
__global__ void col2im_gpu_kernel_nchw(const int n, const T* data_col,
const int height, const int width,
const int patch_h, const int patch_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l,
const int stride_h, const int stride_w,
const int height_col, const int width_col,
T* data_im) {
const int dpatch_h = dilation_h * (patch_h - 1) + 1;
const int dpatch_w = dilation_w * (patch_w - 1) + 1;
CUDA_1D_KERNEL_LOOP(index, n) {
T val = 0;
int w = index % width + pad_l;
int h = (index / width) % height + pad_t;
int c = index / (width * height);
// compute the start and end of the output
int w_col_start = (w < dpatch_w) ? 0 : (w - dpatch_w) / stride_w + 1;
int w_col_end = min(w / stride_w + 1, width_col);
int h_col_start = (h < dpatch_h) ? 0 : (h - dpatch_h) / stride_h + 1;
int h_col_end = min(h / stride_h + 1, height_col);
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
int h_k = (h - h_col * stride_h);
int w_k = (w - w_col * stride_w);
if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
h_k /= dilation_h;
w_k /= dilation_w;
int data_col_index =
(((c * patch_h + h_k) * patch_w + w_k) * height_col + h_col) *
width_col +
w_col;
val += data_col[data_col_index];
}
}
}
data_im[index] = val;
}
}
template <typename T>
__global__ void col2im_gpu_kernel_nhwc(const int n, const T* data_col,
const int width, const int channels,
const int patch_h, const int patch_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l,
const int stride_h, const int stride_w,
const int height_col, const int width_col,
T* data_im) {
const int dpatch_h = dilation_h * (patch_h - 1) + 1;
const int dpatch_w = dilation_w * (patch_w - 1) + 1;
CUDA_1D_KERNEL_LOOP(index, n) {
T val = 0;
int c = index % channels;
int w = index / channels % width + pad_l;
int h = index / channels / width + pad_t;
// compute the start and end of the output
int w_col_start = (w < dpatch_w) ? 0 : (w - dpatch_w) / stride_w + 1;
int w_col_end = min(w / stride_w + 1, width_col);
int h_col_start = (h < dpatch_h) ? 0 : (h - dpatch_h) / stride_h + 1;
int h_col_end = min(h / stride_h + 1, height_col);
int channels_col = patch_h * patch_w * channels;
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
int h_k = h - h_col * stride_h;
int w_k = w - w_col * stride_w;
if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
h_k /= dilation_h;
w_k /= dilation_w;
int c_col = (h_k * patch_w + w_k) * channels + c;
val += data_col[(h_col * width_col + w_col) * channels_col + c_col];
}
}
}
data_im[index] = val;
}
}
// Ported from caffe1
template <typename T, int num_axes>
__global__ void im2col_nd_gpu_kernel(
const int n,
const T* data_im,
const int* im_shape,
const int* col_shape,
const int* kernel_shape,
const int* pad,
const int* stride,
const int* dilation,
T* data_col) {
int d_temp[num_axes]; // NOLINT(runtime/arrays)
int d_iter[num_axes]; // NOLINT(runtime/arrays)
__shared__ int shared_dilation[num_axes];
__shared__ int shared_kernel_shape[num_axes];
__shared__ int shared_pad[num_axes];
__shared__ int shared_stride[num_axes];
__shared__ int shared_col_shape[num_axes + 1];
__shared__ int shared_im_shape[num_axes + 1];
if (threadIdx.x < num_axes) {
shared_dilation[threadIdx.x] = dilation[threadIdx.x];
shared_kernel_shape[threadIdx.x] = kernel_shape[threadIdx.x];
shared_pad[threadIdx.x] = pad[threadIdx.x];
shared_stride[threadIdx.x] = stride[threadIdx.x];
}
if (threadIdx.x < num_axes + 1) {
shared_col_shape[threadIdx.x] = col_shape[threadIdx.x];
shared_im_shape[threadIdx.x] = im_shape[threadIdx.x];
}
__syncthreads();
int i;
CUDA_1D_KERNEL_LOOP(index, n) {
// Initialize channel_in, computed in the loop below, with intermediate
// computations used to compute the spatial indices.
int channel_in = index;
int channel_out = 1;
for (i = num_axes - 1; i >= 0; --i) {
d_temp[i] = channel_in % shared_col_shape[i + 1];
channel_in /= shared_col_shape[i + 1];
channel_out *= shared_kernel_shape[i];
}
channel_out *= channel_in;
int data_col_inc = 1;
for (i = 0; i < num_axes; ++i) {
channel_out *= shared_col_shape[i + 1];
channel_out += d_temp[i];
d_temp[i] = d_temp[i] * shared_stride[i] - shared_pad[i];
channel_in *= shared_im_shape[i + 1];
channel_in += d_temp[i];
data_col_inc *= shared_col_shape[i + 1];
d_iter[i] = 0;
}
T* data_col_ptr = data_col + channel_out;
const T* data_im_ptr = data_im + channel_in;
bool incremented;
do {
bool in_range = true;
for (i = 0; i < num_axes; ++i) {
const int d_iter_im = d_iter[i] * shared_dilation[i] + d_temp[i];
in_range &= d_iter_im >= 0 && d_iter_im < shared_im_shape[i + 1];
if (!in_range) {
break;
}
}
if (in_range) {
int data_im_offset = d_iter[0] * shared_dilation[0];
for (i = 1; i < num_axes; ++i) {
data_im_offset *= shared_im_shape[i + 1];
data_im_offset += d_iter[i] * shared_dilation[i];
}
*data_col_ptr = data_im_ptr[data_im_offset];
} else {
*data_col_ptr = 0;
}
data_col_ptr += data_col_inc;
incremented = false;
for (i = num_axes - 1; i >= 0; --i) {
const int d_max = shared_kernel_shape[i];
if (d_iter[i] == d_max - 1) {
d_iter[i] = 0;
} else { // d_iter[i] < d_max - 1
++d_iter[i];
incremented = true;
break;
}
} // for (int i = num_axes - 1; i >= 0; --i)
} while (incremented); // do
} // CUDA_KERNEL_LOOP(index, n)
}
template <typename T, int num_axes>
__global__ void col2im_nd_gpu_kernel(
const int n,
const T* data_col,
const int* im_shape,
const int* col_shape,
const int* kernel_shape,
const int* pad,
const int* stride,
const int* dilation,
T* data_im) {
int d_im[num_axes]; // NOLINT(runtime/arrays)
int d_col_iter[num_axes]; // NOLINT(runtime/arrays)
int d_col_start[num_axes]; // NOLINT(runtime/arrays)
int d_col_end[num_axes]; // NOLINT(runtime/arrays)
__shared__ int shared_dilation[num_axes];
__shared__ int shared_kernel_shape[num_axes];
__shared__ int shared_pad[num_axes];
__shared__ int shared_stride[num_axes];
__shared__ int shared_col_shape[num_axes + 1];
__shared__ int shared_im_shape[num_axes + 1];
if (threadIdx.x < num_axes) {
shared_dilation[threadIdx.x] = dilation[threadIdx.x];
shared_kernel_shape[threadIdx.x] = kernel_shape[threadIdx.x];
shared_pad[threadIdx.x] = pad[threadIdx.x];
shared_stride[threadIdx.x] = stride[threadIdx.x];
}
if (threadIdx.x < num_axes + 1) {
shared_col_shape[threadIdx.x] = col_shape[threadIdx.x];
shared_im_shape[threadIdx.x] = im_shape[threadIdx.x];
}
__syncthreads();
CUDA_1D_KERNEL_LOOP(index, n) {
// Initialize channel_in, computed in the loop below, with intermediate
// computations used to compute the spatial indices.
int c_im = index;
// Calculate d_im (image dimensions).
for (int i = num_axes - 1; i >= 0; --i) {
d_im[i] = c_im % shared_im_shape[i + 1] + shared_pad[i];
c_im /= shared_im_shape[i + 1];
}
// Calculate col start/end indices.
bool done = false;
for (int i = 0; i < num_axes; ++i) {
const int kernel_extent =
shared_dilation[i] * (shared_kernel_shape[i] - 1) + 1;
d_col_start[i] = d_col_iter[i] = (d_im[i] < kernel_extent)
? 0
: (d_im[i] - kernel_extent) / shared_stride[i] + 1;
d_col_end[i] =
min(d_im[i] / shared_stride[i] + 1, shared_col_shape[i + 1]);
if (d_col_start[i] >= d_col_end[i]) {
// Skip computation if the dimension is 0 at any spatial axis --
// final val will be 0.
data_im[index] = 0;
done = true;
break; // for (int i = 0; i < num_axes; ++i)
}
}
if (done) {
continue; // CUDA_KERNEL_LOOP(index, n)
}
// Loop over the col to compute the output val.
T val = 0;
bool incremented = true;
bool skip = false;
do {
// Compute the final offset.
int final_offset = 0;
int kernel_shape_prod = 1;
int kernel_index;
for (int i = num_axes - 1; i >= 0; --i) {
kernel_index = d_im[i] - d_col_iter[i] * shared_stride[i];
if (kernel_index % shared_dilation[i]) {
skip = true;
break;
} else {
kernel_index /= shared_dilation[i];
final_offset += kernel_index * kernel_shape_prod;
kernel_shape_prod *= shared_kernel_shape[i];
}
}
if (!skip) {
final_offset += kernel_shape_prod * c_im;
for (int i = 0; i < num_axes; ++i) {
final_offset *= shared_col_shape[i + 1];
final_offset += d_col_iter[i];
}
val += data_col[final_offset];
}
skip = false;
incremented = false;
for (int i = num_axes - 1; i >= 0; --i) {
const int d_max = d_col_end[i];
if (d_col_iter[i] == d_max - 1) {
d_col_iter[i] = d_col_start[i];
} else { // d_col_iter[i] < d_max - 1
++d_col_iter[i];
incremented = true;
break; // for (int i = num_axes - 1; i >= 0; --i)
}
} // for (int i = num_axes - 1; i >= 0; --i)
} while (incremented);
data_im[index] = val;
} // CUDA_KERNEL_LOOP(index, n)
}
} // namespace
template <>
void Im2col<float, CUDAContext, StorageOrder::NCHW>(
const float* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l, const int pad_b, const int pad_r,
const int stride_h,
const int stride_w, float* data_col, CUDAContext* context) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
// We are going to launch channels * height_col * width_col kernels, each
// kernel responsible for copying a single-channel grid.
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
int num_kernels = channels * height_col * width_col;
// NOLINT_NEXT_LINE(whitespace/operators)
im2col_gpu_kernel_nchw<float><<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS, 0,
context->cuda_stream()>>>(
num_kernels, data_im, height, width, kernel_h, kernel_w,
dilation_h, dilation_w, pad_t, pad_l, stride_h, stride_w,
height_col, width_col, data_col);
}
template <>
void Im2col<float, CUDAContext, StorageOrder::NHWC>(
const float* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l, const int pad_b, const int pad_r,
const int stride_h,
const int stride_w, float* data_col, CUDAContext* context) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
// We are going to launch height_col * width_col * channels kernels, each
// kernel responsible for copying a single-channel grid.
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
int num_kernels = height_col * width_col * channels;
// NOLINT_NEXT_LINE(whitespace/operators)
im2col_gpu_kernel_nhwc<float><<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS, 0,
context->cuda_stream()>>>(
num_kernels, data_im, height, width, kernel_h, kernel_w,
dilation_h, dilation_w, pad_t, pad_l, stride_h, stride_w,
width_col, channels, data_col);
}
template <>
void Col2im<float, CUDAContext, StorageOrder::NCHW>(
const float* data_col, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l, const int pad_b, const int pad_r,
const int stride_h,
const int stride_w, float* data_im, CUDAContext* context) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
int num_kernels = channels * height * width;
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
col2im_gpu_kernel_nchw<float><<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS, 0,
context->cuda_stream()>>>(
num_kernels, data_col, height, width, kernel_h, kernel_w,
dilation_h, dilation_w,
pad_t, pad_l, stride_h, stride_w,
height_col, width_col, data_im);
}
template <>
void Col2im<float, CUDAContext, StorageOrder::NHWC>(
const float* data_col, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int dilation_h, const int dilation_w,
const int pad_t, const int pad_l, const int pad_b, const int pad_r,
const int stride_h,
const int stride_w, float* data_im, CUDAContext* context) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
int num_kernels = height * width * channels;
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
col2im_gpu_kernel_nhwc<float><<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS, 0,
context->cuda_stream()>>>(
num_kernels, data_col, width, channels, kernel_h, kernel_w,
dilation_h, dilation_w,
pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_im);
}
template <>
void Col2imNd<float, CUDAContext, StorageOrder::NCHW>(
const float* data_col,
const int* img_shape,
const int* col_shape,
const int img_size,
const int col_size,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const int N,
float* data_img,
CUDAContext* context) {
CAFFE_ENFORCE_LT(
N, CAFFE_CUDA_NUM_THREADS, "num_axes should be smaller than block size.");
#define COL2IM_ND_KERNEL(n) \
col2im_nd_gpu_kernel<float, n> /* NOLINT_NEXT_LINE(whitespace/operators) */ \
<<<CAFFE_GET_BLOCKS(img_size), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>( \
img_size, \
data_col, \
img_shape, \
col_shape, \
kernel_shape, \
pad, \
stride, \
dilation, \
data_img)
switch (N) {
case 1:
COL2IM_ND_KERNEL(1);
break;
case 2:
COL2IM_ND_KERNEL(2);
break;
case 3:
COL2IM_ND_KERNEL(3);
break;
case 4:
COL2IM_ND_KERNEL(4);
break;
case 5:
COL2IM_ND_KERNEL(5);
break;
default:
CAFFE_THROW(
"Col2imNd does not support computation with ", N, " spatial axes");
}
}
template <>
void Im2colNd<float, CUDAContext, StorageOrder::NCHW>(
const float* data_img,
const int* img_shape,
const int* col_shape,
const int img_size,
const int col_size,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const int N,
float* data_col,
CUDAContext* context,
bool /*accumlate_output*/) {
CAFFE_ENFORCE_LT(
N, CAFFE_CUDA_NUM_THREADS, "num_axes should be smaller than block size.");
#define IM2COL_ND_KERNEL(n) \
im2col_nd_gpu_kernel<float, n> /* NOLINT_NEXT_LINE(whitespace/operators) */ \
<<<CAFFE_GET_BLOCKS(col_size), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>( \
col_size, \
data_img, \
img_shape, \
col_shape, \
kernel_shape, \
pad, \
stride, \
dilation, \
data_col)
switch (N) {
case 1:
IM2COL_ND_KERNEL(1);
break;
case 2:
IM2COL_ND_KERNEL(2);
break;
case 3:
IM2COL_ND_KERNEL(3);
break;
case 4:
IM2COL_ND_KERNEL(4);
case 5:
IM2COL_ND_KERNEL(5);
break;
default:
CAFFE_THROW(
"Im2colNd does not support computation with ", N, " spatial axes");
}
}
template <>
void CopyMatrix<CUDAContext>(
const size_t itemsize,
const int M,
const int N,
const void* A,
const int lda,
void* B,
const int ldb,
CUDAContext* context) {
cudaMemcpy2DAsync(B, ldb * itemsize, A, lda * itemsize, N * itemsize, M,
cudaMemcpyDeviceToDevice, context->cuda_stream());
}
template <>
void CopyVector(
const int N,
const float* src,
float* dst,
CUDAContext* context) {
cudaMemcpyAsync(
dst,
src,
sizeof(float) * N,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
}
namespace {
__global__ void rowwise_max_kernel(
const int rows,
const int cols,
const float* data,
float* out) {
typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
for (int rowIndex = blockIdx.x; rowIndex < rows; rowIndex += gridDim.x) {
float maxval = -FLT_MAX;
// NB: The memory accesses here are sequentialized; without unrolling
// the loop, there will not be any ILP. However, because we are running
// this kernel with a lot of threads, this should not be a big problem.
// However, if we reduce the number of threads to take advantage of
// warp-wide synchronization, this may become a problem again.
for (int colIndex = threadIdx.x; colIndex < cols; colIndex += blockDim.x) {
maxval = max(data[rowIndex * cols + colIndex], maxval);
}
maxval = BlockReduce(temp_storage).Reduce(maxval, cub::Max());
if (threadIdx.x == 0) {
out[rowIndex] = maxval;
}
__syncthreads();
}
}
__global__ void colwise_max_kernel(
const int rows,
const int cols,
const float* data,
float* out) {
typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
for (int colIndex = blockIdx.x; colIndex < cols; colIndex += gridDim.x) {
float maxval = -FLT_MAX;
for (int rowIndex = threadIdx.x; rowIndex < rows; rowIndex += blockDim.x) {
maxval = max(data[rowIndex * cols + colIndex], maxval);
}
maxval = BlockReduce(temp_storage).Reduce(maxval, cub::Max());
if (threadIdx.x == 0) {
out[colIndex] = maxval;
}
__syncthreads();
}
}
} // namespace
template <>
void RowwiseMax(
const int N,
const int D,
const float* x,
float* y,
CUDAContext* context) {
rowwise_max_kernel<<<
std::min(N, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, D, x, y);
}
template <>
void ColwiseMax(
const int N,
const int D,
const float* x,
float* y,
CUDAContext* context) {
colwise_max_kernel<<<
std::min(D, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, D, x, y);
}
namespace {
__global__ void
maximum_kernel(const int N, const float alpha, const float* x, float* y) {
CUDA_1D_KERNEL_LOOP(i, N) {
y[i] = fmaxf(x[i], alpha);
}
}
} // namespace
template <>
void Maximum(
const int N,
const float alpha,
const float* x,
float* y,
CUDAContext* context) {
maximum_kernel<<<
std::min(N, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, alpha, x, y);
}
} // namespace math
} // namespace caffe2