| // Implements the math functions for CPU. |
| #include <cub/block/block_reduce.cuh> |
| |
| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/utils/conversions.h" |
| #include "caffe2/utils/math.h" |
| |
| #include <cub/cub.cuh> |
| |
| #if THRUST_VERSION >= 100800 |
| #define THRUST_SUPPORTS_PER_THREAD |
| #endif // THRUST_VERSION >= 100800 |
| |
| namespace caffe2 { |
| namespace math { |
| |
| #define DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(T, Funcname, function) \ |
| __global__ \ |
| void _Kernel_##T##_##Funcname(const int N, const T* x, T* y) { \ |
| CUDA_1D_KERNEL_LOOP(i, N) { \ |
| y[i] = function(x[i]); \ |
| } \ |
| } \ |
| template <> \ |
| void Funcname<T, CUDAContext>( \ |
| const int N, const T* x, T* y, \ |
| CUDAContext* context) { \ |
| _Kernel_##T##_##Funcname<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, \ |
| 0, context->cuda_stream()>>>( \ |
| N, x, y); \ |
| } |
| |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Exp, expf); |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Log, logf); |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Cos, cosf); |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sin, sinf); |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Abs, fabsf); |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqrt, sqrtf); |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, InvSqrt, rsqrtf); |
| |
| __device__ float cuda_sqrf(const float x) { return x * x; } |
| |
| DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqr, cuda_sqrf); |
| |
| #undef DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION |
| |
| #define DELEGATE_SINCOS_CUDA_FUNCTION(T) \ |
| __global__ void _Kernel_##T##_##SinCos( \ |
| const int N, const T* x, T* ys, T* yc) { \ |
| CUDA_1D_KERNEL_LOOP(i, N) { \ |
| sincos(x[i], ys + i, yc + i); \ |
| } \ |
| } \ |
| template <> \ |
| void SinCos<T, CUDAContext>( \ |
| const int N, const T* x, T* ys, T* yc, CUDAContext* context) { \ |
| _Kernel_##T##_##SinCos<<< \ |
| CAFFE_GET_BLOCKS(N), \ |
| CAFFE_CUDA_NUM_THREADS, \ |
| 0, \ |
| context->cuda_stream()>>>(N, x, ys, yc); \ |
| } |
| |
| DELEGATE_SINCOS_CUDA_FUNCTION(float) |
| DELEGATE_SINCOS_CUDA_FUNCTION(double) |
| |
| #undef DELEGATE_SINCOS_CUDA_FUNCTION |
| |
| #define DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(T, Funcname, expr) \ |
| __global__ void _Kernel_##T##_##Funcname( \ |
| const int N, const T* a, const T* b, T* y) { \ |
| CUDA_1D_KERNEL_LOOP(i, N) { \ |
| float r = convert::To<T, float>(a[i]) expr convert::To<T, float>(b[i]); \ |
| y[i] = convert::To<float, T>(r); \ |
| } \ |
| } \ |
| template <> \ |
| void Funcname<T, CUDAContext>( \ |
| const int N, const T* a, const T* b, T* y, CUDAContext* context) { \ |
| _Kernel_##T##_##Funcname<<< \ |
| CAFFE_GET_BLOCKS(N), \ |
| CAFFE_CUDA_NUM_THREADS, \ |
| 0, \ |
| context->cuda_stream()>>>(N, a, b, y); \ |
| } |
| |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Add, +); |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Sub, -); |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Mul, *); |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float, Div, /); |
| |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Add, +); |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Sub, -); |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Mul, *); |
| DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION(float16, Div, /); |
| |
| #undef DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION |
| |
| #define DELEGATE_SIMPLE_CUDA_BINARY_PREFIX_FUNCTION(T, Funcname, func) \ |
| __global__ void _Kernel_##T##_##Funcname( \ |
| const int N, const T* a, const T* b, T* y) { \ |
| CUDA_1D_KERNEL_LOOP(i, N) { \ |
| float r = \ |
| func(convert::To<T, float>(a[i]), convert::To<T, float>(b[i])); \ |
| y[i] = convert::To<float, T>(r); \ |
| } \ |
| } \ |
| template <> \ |
| void Funcname<T, CUDAContext>( \ |
| const int N, const T* a, const T* b, T* y, CUDAContext* context) { \ |
| _Kernel_##T##_##Funcname<<< \ |
| CAFFE_GET_BLOCKS(N), \ |
| CAFFE_CUDA_NUM_THREADS, \ |
| 0, \ |
| context->cuda_stream()>>>(N, a, b, y); \ |
| } |
| |
| DELEGATE_SIMPLE_CUDA_BINARY_PREFIX_FUNCTION(float, ElemwiseMax, fmaxf); |
| |
| #undef DELEGATE_SIMPLE_CUDA_BINARY_INFIX_FUNCTION |
| |
| #define DELEGATE_REDUCTION_FUNCTION(T, Funcname, func) \ |
| template <> \ |
| void Funcname<T, CUDAContext>( \ |
| const int N, \ |
| const T* src, \ |
| T* dst, \ |
| Tensor<CUDAContext>* scratch_ptr, \ |
| CUDAContext* context) { \ |
| size_t memRequired = 0; \ |
| cub::DeviceReduce::func( \ |
| nullptr, memRequired, src, dst, N, context->cuda_stream()); \ |
| auto buffer_size = \ |
| static_cast<TIndex>((memRequired + sizeof(T) - 1) / sizeof(T)); \ |
| scratch_ptr->Resize(std::vector<TIndex>{buffer_size}); \ |
| cub::DeviceReduce::func( \ |
| static_cast<void*>(scratch_ptr->mutable_data<T>()), \ |
| memRequired, \ |
| src, \ |
| dst, \ |
| N, \ |
| context->cuda_stream()); \ |
| } |
| |
| DELEGATE_REDUCTION_FUNCTION(float, ReduceMin, Min) |
| DELEGATE_REDUCTION_FUNCTION(float, ReduceMax, Max) |
| |
| #undef DELEGATE_REDUCTION_FUNCTION |
| |
| // Caffe2 gemm provides a simpler interface to the gemm functions, with the |
| // limitation that the data has to be contiguous in memory. |
| template <> |
| void Gemm<float, CUDAContext>( |
| const CBLAS_TRANSPOSE TransA, |
| const CBLAS_TRANSPOSE TransB, |
| const int M, |
| const int N, |
| const int K, |
| const float alpha, |
| const float* A, |
| const float* B, |
| const float beta, |
| float* C, |
| CUDAContext* context, |
| TensorProto::DataType math_type) { |
| // Note that cublas follows fortran order, so the order is different from |
| // the cblas convention. |
| int lda = (TransA == CblasNoTrans) ? K : M; |
| int ldb = (TransB == CblasNoTrans) ? N : K; |
| cublasOperation_t cuTransA = |
| (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| cublasOperation_t cuTransB = |
| (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| CUBLAS_ENFORCE(cublasSgemm( |
| context->cublas_handle(), |
| cuTransB, |
| cuTransA, |
| N, |
| M, |
| K, |
| &alpha, |
| B, |
| ldb, |
| A, |
| lda, |
| &beta, |
| C, |
| N)); |
| } |
| |
| template <> |
| void Gemm<float16, CUDAContext>( |
| const CBLAS_TRANSPOSE TransA, |
| const CBLAS_TRANSPOSE TransB, |
| const int M, |
| const int N, |
| const int K, |
| const float alpha, |
| const float16* A, |
| const float16* B, |
| const float beta, |
| float16* C, |
| CUDAContext* context, |
| TensorProto::DataType math_type) { |
| // Note that cublas follows fortran order, so the order is different from |
| // the cblas convention. |
| int lda = (TransA == CblasNoTrans) ? K : M; |
| int ldb = (TransB == CblasNoTrans) ? N : K; |
| cublasOperation_t cuTransA = |
| (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| cublasOperation_t cuTransB = |
| (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| if (math_type == TensorProto_DataType_FLOAT) { |
| CUBLAS_CHECK(cublasSgemmEx( |
| context->cublas_handle(), |
| cuTransB, |
| cuTransA, |
| N, |
| M, |
| K, |
| &alpha, |
| B, |
| CUDA_R_16F, |
| ldb, |
| A, |
| CUDA_R_16F, |
| lda, |
| &beta, |
| C, |
| CUDA_R_16F, |
| N)); |
| |
| } else if (math_type == TensorProto_DataType_FLOAT16) { |
| // convert alpha, beta from float -> __half |
| auto alpha_fp16 = convert::floatToHalf(alpha); |
| auto beta_fp16 = convert::floatToHalf(beta); |
| |
| // call cublasHgemm |
| CUBLAS_CHECK(cublasHgemm( |
| context->cublas_handle(), |
| cuTransB, |
| cuTransA, |
| N, |
| M, |
| K, |
| &alpha_fp16, |
| (const __half*)B, |
| ldb, |
| (const __half*)A, |
| lda, |
| &beta_fp16, |
| (__half*)C, |
| N)); |
| } else { |
| // fail |
| CAFFE_THROW("Unsupported math type"); |
| } |
| } |
| |
| #if CUDA_VERSION >= 9000 |
| |
| // No change, but required. Defer to default CUDA engine |
| template <> |
| void Gemm<float, CUDAContext, TensorCoreEngine>( |
| const CBLAS_TRANSPOSE TransA, |
| const CBLAS_TRANSPOSE TransB, |
| const int M, |
| const int N, |
| const int K, |
| const float alpha, |
| const float* A, |
| const float* B, |
| const float beta, |
| float* C, |
| CUDAContext* context, |
| TensorProto::DataType math_type) { |
| return Gemm<float,CUDAContext>(TransA, |
| TransB, |
| M, |
| N, |
| K, |
| alpha, |
| A, |
| B, |
| beta, |
| C, |
| context, |
| math_type); |
| } |
| |
| template <> |
| void Gemm<float16, CUDAContext, TensorCoreEngine>( |
| const CBLAS_TRANSPOSE TransA, |
| const CBLAS_TRANSPOSE TransB, |
| const int M, |
| const int N, |
| const int K, |
| const float alpha, |
| const float16* A, |
| const float16* B, |
| const float beta, |
| float16* C, |
| CUDAContext* context, |
| TensorProto::DataType math_type) { |
| // Note that cublas follows fortran order, so the order is different from |
| // the cblas convention. |
| int lda = (TransA == CblasNoTrans) ? K : M; |
| int ldb = (TransB == CblasNoTrans) ? N : K; |
| cublasOperation_t cuTransA = |
| (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| cublasOperation_t cuTransB = |
| (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| |
| // enable TensorCore for this call on this handle |
| if (TensorCoreAvailable()) { |
| CUBLAS_ENFORCE(cublasSetMathMode( |
| context->cublas_handle(), |
| CUBLAS_TENSOR_OP_MATH)); |
| } |
| |
| CUBLAS_CHECK(cublasGemmEx( |
| context->cublas_handle(), |
| cuTransB, |
| cuTransA, |
| N, |
| M, |
| K, |
| &alpha, |
| B, |
| CUDA_R_16F, |
| ldb, |
| A, |
| CUDA_R_16F, |
| lda, |
| &beta, |
| C, |
| CUDA_R_16F, |
| N, |
| CUDA_R_32F, |
| CUBLAS_GEMM_DFALT_TENSOR_OP)); |
| |
| // Now disable TensorCore math for subsequent calls to this handle |
| if (TensorCoreAvailable()) { |
| CUBLAS_ENFORCE(cublasSetMathMode( |
| context->cublas_handle(), |
| CUBLAS_DEFAULT_MATH)); |
| } |
| } |
| |
| #endif // CUDA_VERSION >= 9000 |
| |
| template <> |
| void GemmEx<float, CUDAContext>( |
| const CBLAS_TRANSPOSE TransA, |
| const CBLAS_TRANSPOSE TransB, |
| const int M, |
| const int N, |
| const int K, |
| const float alpha, |
| const float* A, |
| const int lda, |
| const float* B, |
| const int ldb, |
| const float beta, |
| float* C, |
| const int ldc, |
| CUDAContext* context) { |
| // Note that cublas follows fortran order, so the order is different from |
| // the cblas convention. |
| cublasOperation_t cuTransA = |
| (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| cublasOperation_t cuTransB = |
| (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; |
| CUBLAS_ENFORCE(cublasSgemm( |
| context->cublas_handle(), |
| cuTransB, |
| cuTransA, |
| N, |
| M, |
| K, |
| &alpha, |
| B, |
| ldb, |
| A, |
| lda, |
| &beta, |
| C, |
| ldc)); |
| } |
| |
| template <> |
| void Gemv<float, CUDAContext>( |
| const CBLAS_TRANSPOSE TransA, |
| const int M, |
| const int N, |
| const float alpha, |
| const float* A, |
| const float* x, |
| const float beta, |
| float* y, |
| CUDAContext* context, |
| TensorProto::DataType math_type) { |
| cublasOperation_t cuTransA = |
| (TransA == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N; |
| CUBLAS_ENFORCE(cublasSgemv( |
| context->cublas_handle(), |
| cuTransA, |
| N, |
| M, |
| &alpha, |
| A, |
| N, |
| x, |
| 1, |
| &beta, |
| y, |
| 1)); |
| } |
| |
| // Batched Add variants |
| namespace { |
| |
| template <typename T> |
| __global__ void AddStripedBatchKernel( |
| const int N, |
| const T* first, |
| T* Y, |
| const int stripe, |
| const int batch) { |
| for (int j = 0; j < batch; j++) { |
| const T* x = first + j * stripe; |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] += x[i]; |
| } |
| } |
| } |
| } // namespace |
| |
| #define CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(T) \ |
| template <> \ |
| void AddStripedBatch<T, CUDAContext>( \ |
| const int N, \ |
| const T* first, \ |
| T* Y, \ |
| const int stripe, \ |
| const int batch, \ |
| CUDAContext* context) { \ |
| AddStripedBatchKernel<T><<< \ |
| CAFFE_GET_BLOCKS(N), \ |
| CAFFE_CUDA_NUM_THREADS, \ |
| 0, \ |
| context->cuda_stream()>>>(N, first, Y, stripe, batch); \ |
| } |
| |
| CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(float); |
| CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(double); |
| #undef CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH |
| |
| template <> |
| void Gemv<float16, CUDAContext>( |
| const CBLAS_TRANSPOSE TransA, |
| const int M, |
| const int N, |
| const float alpha, |
| const float16* A, |
| const float16* x, |
| const float beta, |
| float16* y, |
| CUDAContext* context, |
| TensorProto::DataType math_type) { |
| cublasOperation_t cuTransA = |
| (TransA == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N; |
| |
| // sort out what we need to call cublasSgemmEx / cublasHgemm |
| int m = (cuTransA == CUBLAS_OP_N) ? N : M; |
| int k = (cuTransA == CUBLAS_OP_N) ? M : N; |
| int LDA = (cuTransA == CUBLAS_OP_N) ? m : k; |
| int LDC = m; |
| |
| if (math_type == TensorProto_DataType_FLOAT) { |
| CUBLAS_CHECK(cublasSgemmEx( |
| context->cublas_handle(), |
| cuTransA, |
| CUBLAS_OP_N, |
| m, |
| 1, |
| k, |
| &alpha, |
| A, |
| CUDA_R_16F, |
| LDA, |
| x, |
| CUDA_R_16F, |
| k, |
| &beta, |
| y, |
| CUDA_R_16F, |
| LDC)); |
| } else if (math_type == TensorProto_DataType_FLOAT16) { |
| auto alpha_fp16 = convert::floatToHalf(alpha); |
| auto beta_fp16 = convert::floatToHalf(beta); |
| |
| CUBLAS_CHECK(cublasHgemm( |
| context->cublas_handle(), |
| cuTransA, |
| CUBLAS_OP_N, |
| m, |
| 1, |
| k, |
| &alpha_fp16, |
| (const __half*)A, |
| LDA, |
| (const __half*)x, |
| k, |
| &beta_fp16, |
| (__half*)y, |
| LDC)); |
| } else { |
| // fail |
| CAFFE_THROW("Unsupported math type"); |
| } |
| } |
| |
| namespace { |
| template <typename T> |
| __global__ void SetKernel(const int N, const T alpha, T* Y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] = alpha; |
| } |
| } |
| } // namespace |
| |
| #define CAFFE2_SPECIALIZED_CUDA_SET(T) \ |
| template <> \ |
| void Set<T, CUDAContext>(const TIndex N, const T alpha, T *Y, \ |
| CUDAContext* context) { \ |
| SetKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, \ |
| 0, context->cuda_stream()>>>(N, alpha, Y); \ |
| } |
| |
| CAFFE2_SPECIALIZED_CUDA_SET(float); |
| CAFFE2_SPECIALIZED_CUDA_SET(double); |
| CAFFE2_SPECIALIZED_CUDA_SET(bool); |
| CAFFE2_SPECIALIZED_CUDA_SET(int8_t); |
| CAFFE2_SPECIALIZED_CUDA_SET(int16_t); |
| CAFFE2_SPECIALIZED_CUDA_SET(float16); |
| CAFFE2_SPECIALIZED_CUDA_SET(int); |
| CAFFE2_SPECIALIZED_CUDA_SET(int64_t); |
| CAFFE2_SPECIALIZED_CUDA_SET(char); |
| CAFFE2_SPECIALIZED_CUDA_SET(uint8_t); |
| CAFFE2_SPECIALIZED_CUDA_SET(uint16_t); |
| #undef CAFFE2_SPECIALIZED_CUDA_SET |
| |
| namespace { |
| template <typename T> |
| __global__ void |
| UniformShift(const int N, const float min, const float max, T* x) { |
| float scale = max - min; |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| x[i] = convert::To<float, T>(convert::To<T, float>(x[i]) * scale + min); |
| } |
| } |
| |
| __global__ void UniformIntFit(const int N, const int min, const int max, |
| unsigned int* x) { |
| int* x_int = reinterpret_cast<int*>(x); |
| int range = (max - min + 1); |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| x_int[i] = min + static_cast<int>(x[i] % range); |
| } |
| } |
| } // namespace |
| |
| template <> |
| void RandUniform<float, CUDAContext>( |
| const int n, const float min, const float max, float* r, |
| CUDAContext* context) { |
| CURAND_ENFORCE(curandGenerateUniform(context->curand_generator(), r, n)); |
| UniformShift<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, context->cuda_stream()>>>(n, min, max, r); |
| } |
| |
| template <> |
| void RandUniform<double, CUDAContext>( |
| const int n, const double min, const double max, double* r, |
| CUDAContext* context) { |
| CURAND_ENFORCE( |
| curandGenerateUniformDouble(context->curand_generator(), r, n)); |
| UniformShift<double><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, context->cuda_stream()>>>(n, min, max, r); |
| } |
| |
| template <> |
| void RandUniform<int, CUDAContext>( |
| const int n, const int min, const int max, int* r, |
| CUDAContext* context) { |
| CURAND_ENFORCE(curandGenerate( |
| context->curand_generator(), reinterpret_cast<unsigned int*>(r), n)); |
| UniformIntFit<<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, context->cuda_stream()>>>( |
| n, min, max, reinterpret_cast<unsigned int*>(r)); |
| } |
| |
| template <typename T> |
| int HandleOddLengthRandGaussian( |
| const int n, |
| const T mean, |
| const T std, |
| T* r, |
| CUDAContext* context) { |
| if (n % 2 == 1) { |
| std::default_random_engine generator; |
| std::normal_distribution<T> distribution(mean, std); |
| const T random_value = distribution(generator); |
| math::Set<T, CUDAContext>(1, random_value, r + (n - 1), context); |
| return n - 1; |
| } |
| return n; |
| } |
| |
| template <> |
| void RandGaussian<float, CUDAContext>( |
| const int n, const float mean, const float std, float* r, |
| CUDAContext* context) { |
| // If n is odd, we add a random Gaussian value at the end manually |
| // and generate n-1 random values using curandGenerateNormal. |
| // curandGenerateNormal requires n to be even. |
| const int even_n = |
| HandleOddLengthRandGaussian<float>(n, mean, std, r, context); |
| CURAND_ENFORCE( |
| curandGenerateNormal(context->curand_generator(), r, even_n, mean, std)); |
| } |
| |
| template <> |
| void RandGaussian<double, CUDAContext>( |
| const int n, const double mean, const double std, double* r, |
| CUDAContext* context) { |
| const int even_n = |
| HandleOddLengthRandGaussian<double>(n, mean, std, r, context); |
| CURAND_ENFORCE(curandGenerateNormalDouble( |
| context->curand_generator(), r, even_n, mean, std)); |
| } |
| |
| template<> |
| void Dot<float, CUDAContext>( |
| const int n, const float* a, const float* b, float* y, |
| CUDAContext* context) { |
| float result; |
| CUBLAS_ENFORCE(cublasSdot(context->cublas_handle(), n, a, 1, b, 1, &result)); |
| context->Copy<float, CPUContext, CUDAContext>(1, &result, y); |
| } |
| |
| template <> |
| void Dot<float16, CUDAContext>( |
| const int n, |
| const float16* a, |
| const float16* b, |
| float16* y, |
| CUDAContext* context) { |
| float16 result; |
| // execute with 32-bit math |
| CUBLAS_CHECK(cublasDotEx( |
| context->cublas_handle(), |
| n, |
| a, |
| CUDA_R_16F, |
| 1, |
| b, |
| CUDA_R_16F, |
| 1, |
| &result, |
| CUDA_R_16F, |
| CUDA_R_32F)); |
| context->Copy<float16, CPUContext, CUDAContext>(1, &result, y); |
| } |
| |
| // A previous version of caffe2 used Thrust but it turns out that thrust |
| // reduction has an implicit scratch space allocation and deallocation, which |
| // may interfere with NCCL and create a deadlock. Hence we are using a custom |
| // reduction here. |
| #define SUM_KERNEL_NTHREADS 128 |
| template <typename T> |
| __global__ void SumKernel(const int N, const T* X, T* Y, bool square) { |
| const int idx = threadIdx.x; |
| __shared__ float reduction_buffer[SUM_KERNEL_NTHREADS]; |
| |
| reduction_buffer[idx] = 0; |
| |
| // A multilevel reduction. |
| // N -> 128 |
| if (!square) { |
| for (int i = idx; i < N; i += SUM_KERNEL_NTHREADS) { |
| reduction_buffer[idx] += convert::To<T, float>(X[i]); |
| } |
| } else { |
| for (int i = idx; i < N; i += SUM_KERNEL_NTHREADS) { |
| float Xi = convert::To<T, float>(X[i]); |
| reduction_buffer[idx] += Xi * Xi; |
| } |
| } |
| __syncthreads(); |
| // 128 -> 32 |
| if (idx < 32) { |
| reduction_buffer[idx] += |
| reduction_buffer[idx + 32] + |
| reduction_buffer[idx + 64] + |
| reduction_buffer[idx + 96]; |
| } |
| __syncthreads(); |
| // 32 -> 1 |
| if (idx == 0) { |
| float tmp = 0; |
| for (int i = 0; i < 32; ++i) { |
| tmp += reduction_buffer[i]; |
| } |
| *Y = convert::To<float, T>(tmp); |
| } |
| } |
| |
| // According to the benchmarks script |
| // caffe2/caffe2/experiments/python/device_reduce_sum_bench.py, |
| // device reduce is slower for N <= 10000. |
| #define DEVICE_REDUCE_SIZE_THRESHOLD 10000 |
| |
| namespace { |
| |
| template <typename T> |
| __global__ void SumConvertKernel(float* sum, T* dest) { |
| *dest = convert::To<float, T>(*sum); |
| } |
| |
| template <typename FloatIterT> |
| void SumFloatIter( |
| const int N, |
| FloatIterT it, |
| float*& dest, |
| CUDAContext* context, |
| Tensor<CUDAContext>* scratch_ptr) { |
| size_t memRequired = 0; |
| cub::DeviceReduce::Sum( |
| nullptr, memRequired, it, dest, N, context->cuda_stream()); |
| auto buffer_size = |
| static_cast<TIndex>((memRequired + sizeof(float) - 1) / sizeof(float)); |
| if (!dest) { |
| // allocate one more float at the end of scratch for dest |
| scratch_ptr->Resize(std::vector<TIndex>{buffer_size + 1}); |
| dest = scratch_ptr->template mutable_data<float>() + buffer_size; |
| } else { |
| scratch_ptr->Resize(std::vector<TIndex>{buffer_size}); |
| } |
| cub::DeviceReduce::Sum( |
| static_cast<void*>(scratch_ptr->template mutable_data<float>()), |
| memRequired, |
| it, |
| dest, |
| N, |
| context->cuda_stream()); |
| } |
| } // namespace |
| |
| template <> |
| void Sum<float, CUDAContext>( |
| const int N, |
| const float* x, |
| float* y, |
| CUDAContext* context, |
| Tensor<CUDAContext>* scratch_ptr) { |
| if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { |
| SumFloatIter(N, x, y, context, scratch_ptr); |
| } else { |
| SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( |
| N, x, y, false); |
| } |
| } |
| |
| namespace { |
| template <typename T> |
| struct FloatTransform { |
| inline __host__ __device__ float operator()(const T v) const { |
| return convert::To<T, float>(v); |
| } |
| }; |
| } // namespace |
| |
| #define CAFFE2_MATH_SUM_FUNC(T) \ |
| template <> \ |
| void Sum<T, CUDAContext>( \ |
| const int N, \ |
| const T* x, \ |
| T* y, \ |
| CUDAContext* context, \ |
| Tensor<CUDAContext>* scratch_ptr) { \ |
| if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { \ |
| FloatTransform<T> transform; \ |
| cub::TransformInputIterator<float, FloatTransform<T>, const T*> it( \ |
| x, transform); \ |
| float* sum = nullptr; \ |
| SumFloatIter(N, it, sum, context, scratch_ptr); \ |
| SumConvertKernel<<<1, 1, 0, context->cuda_stream()>>>(sum, y); \ |
| } else { \ |
| SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( \ |
| N, x, y, false); \ |
| } \ |
| } |
| |
| CAFFE2_MATH_SUM_FUNC(float16) |
| #undef CAFFE2_MATH_SUM_FUNC |
| |
| namespace { |
| template <typename T> |
| struct SqrTransform { |
| inline __host__ __device__ T operator()(const T v) const { |
| return v * v; |
| } |
| }; |
| } // namespace |
| |
| template <> |
| void SumSqr<float, CUDAContext>( |
| const int N, |
| const float* x, |
| float* y, |
| CUDAContext* context, |
| Tensor<CUDAContext>* scratch_ptr) { |
| if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { |
| SqrTransform<float> transform; |
| cub::TransformInputIterator<float, SqrTransform<float>, const float*> it( |
| x, transform); |
| SumFloatIter(N, it, y, context, scratch_ptr); |
| } else { |
| SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( |
| N, x, y, true); |
| } |
| } |
| |
| #define CAFFE2_MATH_SUMSQR_FUNC(T) \ |
| template <> \ |
| void SumSqr<T, CUDAContext>( \ |
| const int N, \ |
| const T* x, \ |
| T* y, \ |
| CUDAContext* context, \ |
| Tensor<CUDAContext>* scratch_ptr) { \ |
| if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { \ |
| FloatTransform<T> float_transform; \ |
| cub::TransformInputIterator<float, FloatTransform<T>, const T*> \ |
| float_it(x, float_transform); \ |
| SqrTransform<float> sqr_transform; \ |
| cub::TransformInputIterator< \ |
| float, \ |
| SqrTransform<float>, \ |
| decltype(float_it)> \ |
| it(float_it, sqr_transform); \ |
| float* sum = nullptr; \ |
| SumFloatIter(N, it, sum, context, scratch_ptr); \ |
| SumConvertKernel<<<1, 1, 0, context->cuda_stream()>>>(sum, y); \ |
| } else { \ |
| SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( \ |
| N, x, y, true); \ |
| } \ |
| } |
| |
| CAFFE2_MATH_SUMSQR_FUNC(float16) |
| #undef CAFFE2_MATH_SUMSQR_FUNC |
| #undef DEVICE_REDUCE_SIZE_THRESHOLD |
| |
| namespace { |
| template <typename T> |
| __global__ void SelectKernel( |
| const int N, const int D, const T* x, const int* idx, T* y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| y[i] = x[i * D + idx[i]]; |
| } |
| } |
| } // namespace |
| |
| template <> |
| void Select<float, CUDAContext>( |
| const int N, const int D, const float* x, const int* idx, float* y, |
| CUDAContext* context) { |
| SelectKernel<float><<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, |
| 0, context->cuda_stream()>>>(N, D, x, idx, y); |
| } |
| |
| template <> |
| void Select<float16, CUDAContext>( |
| const int N, |
| const int D, |
| const float16* x, |
| const int* idx, |
| float16* y, |
| CUDAContext* context) { |
| SelectKernel<float16><<< |
| CAFFE_GET_BLOCKS(N), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(N, D, x, idx, y); |
| } |
| |
| namespace { |
| template <typename T> |
| __global__ void ScaleKernel(const int n, const float alpha, const T* x, T* y) { |
| CUDA_1D_KERNEL_LOOP(i, n) { |
| // y[i] = convert::To<float,T>(convert::To<T, float>(x[i]) * alpha); |
| y[i] = convert::Get<T>(convert::Get<float>(x[i]) * alpha); |
| } |
| } |
| |
| template <typename T> |
| __global__ void |
| ScaleKernelDeviceAlpha(const int n, const float* alpha, const T* x, T* y) { |
| CUDA_1D_KERNEL_LOOP(i, n) { |
| y[i] = x[i] * (*alpha); |
| } |
| } |
| |
| template <typename T> |
| __global__ void PowKernel(const int n, const T* x, const T exponent, T* y) { |
| CUDA_1D_KERNEL_LOOP(i, n) { |
| y[i] = powf(x[i], exponent); |
| } |
| } |
| |
| // fp16 specialization |
| template <> |
| __global__ void ScaleKernelDeviceAlpha( |
| const int n, |
| const float* alpha, |
| const float16* x, |
| float16* y) { |
| CUDA_1D_KERNEL_LOOP(i, n) { |
| y[i] = convert::To<float, float16>( |
| convert::To<float16, float>(x[i]) * (*alpha)); |
| } |
| } |
| |
| } // namespace |
| |
| template <> |
| void Powx<float, CUDAContext>( |
| const int N, |
| const float* a, |
| const float b, |
| float* y, |
| CUDAContext* context) { |
| PowKernel<<< |
| CAFFE_GET_BLOCKS(N), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(N, a, b, y); |
| } |
| |
| template <> |
| void Scale<float, CUDAContext>( |
| const int n, |
| const float alpha, |
| const float* x, |
| float* y, |
| CUDAContext* context) { |
| ScaleKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, context->cuda_stream()>>>(n, alpha, x, y); |
| } |
| |
| template <> |
| void Scale<float16, CUDAContext>( |
| const int n, |
| const float alpha, |
| const float16* x, |
| float16* y, |
| CUDAContext* context) { |
| ScaleKernel<float16><<< |
| CAFFE_GET_BLOCKS(n), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(n, alpha, x, y); |
| } |
| |
| template <> |
| void Scale<float, CUDAContext>( |
| const int n, const float* alpha, const float *x, float* y, |
| CUDAContext* context) { |
| ScaleKernelDeviceAlpha<float><<< |
| CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>( |
| n, alpha, x, y); |
| } |
| |
| template <> |
| void Scale<float16, CUDAContext>( |
| const int n, |
| const float* alpha, |
| const float16* x, |
| float16* y, |
| CUDAContext* context) { |
| ScaleKernelDeviceAlpha<float16><<< |
| CAFFE_GET_BLOCKS(n), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(n, alpha, x, y); |
| } |
| |
| template <> |
| void Axpy<float, CUDAContext>( |
| const int N, |
| const float alpha, |
| const float* X, |
| float* Y, |
| CUDAContext* context) { |
| CUBLAS_ENFORCE(cublasSaxpy(context->cublas_handle(), N, &alpha, X, 1, Y, 1)); |
| } |
| |
| template <> |
| void Axpy<double, CUDAContext>( |
| const int N, |
| const float alpha, |
| const double* X, |
| double* Y, |
| CUDAContext* context) { |
| double alpha_d{alpha}; |
| CUBLAS_ENFORCE( |
| cublasDaxpy(context->cublas_handle(), N, &alpha_d, X, 1, Y, 1)); |
| } |
| |
| template <> |
| void Axpy<float16, CUDAContext>( |
| const int N, |
| const float alpha, |
| const float16* X, |
| float16* Y, |
| CUDAContext* context) { |
| CUBLAS_CHECK(cublasAxpyEx( |
| context->cublas_handle(), |
| N, |
| &alpha, |
| CUDA_R_16F, |
| X, |
| CUDA_R_16F, |
| 1, |
| Y, |
| CUDA_R_16F, |
| 1, |
| CUDA_R_32F)); |
| } |
| |
| namespace { |
| template <typename T> |
| __global__ void AxpyKernel(const int n, const float* a, const T* x, T* y) { |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| y[index] = convert::Get<T>( |
| convert::Get<float>(x[index]) * (*a) + convert::Get<float>(y[index])); |
| } |
| } |
| } // namespace |
| |
| template <> |
| void Axpy<float, CUDAContext>( |
| const int n, const float* alpha, const float* X, |
| float* Y, CUDAContext* context) { |
| AxpyKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, context->cuda_stream()>>>(n, alpha, X, Y); |
| } |
| |
| template <> |
| void Axpy<float16, CUDAContext>( |
| const int n, |
| const float* alpha, |
| const float16* X, |
| float16* Y, |
| CUDAContext* context) { |
| AxpyKernel<float16><<< |
| CAFFE_GET_BLOCKS(n), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(n, alpha, X, Y); |
| } |
| |
| namespace { |
| template <typename T> |
| __global__ void AxpbyKernel(const int n, const T a, const T* x, |
| const T b, T* y) { |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| y[index] = x[index] * a + y[index] * b; |
| } |
| } |
| } // namespace |
| |
| template <> |
| void Axpby<float, CUDAContext>( |
| const int n, const float a, const float* x, const float b, float* y, |
| CUDAContext* context) { |
| AxpbyKernel<float><<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, |
| 0, context->cuda_stream()>>>(n, a, x, b, y); |
| } |
| |
| namespace { |
| |
| template <typename T> |
| __global__ void im2col_gpu_kernel_nchw(const int n, const T* data_im, |
| const int height, const int width, const int kernel_h, const int kernel_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, |
| const int stride_h, const int stride_w, |
| const int height_col, const int width_col, |
| T* data_col) { |
| |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| int w_out = index % width_col; |
| int h_index = index / width_col; |
| int h_out = h_index % height_col; |
| int channel_in = h_index / height_col; |
| int channel_out = channel_in * kernel_h * kernel_w; |
| int h_in = h_out * stride_h - pad_t; |
| int w_in = w_out * stride_w - pad_l; |
| T* data_col_ptr = data_col; |
| data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out; |
| const T* data_im_ptr = data_im; |
| data_im_ptr += (channel_in * height + h_in) * width + w_in; |
| for (int i = 0; i < kernel_h; ++i) { |
| for (int j = 0; j < kernel_w; ++j) { |
| int h = h_in + i * dilation_h; |
| int w = w_in + j * dilation_w; |
| *data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ? |
| data_im_ptr[i * dilation_h * width + j * dilation_w] : 0; |
| data_col_ptr += height_col * width_col; |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| __global__ void im2col_gpu_kernel_nhwc(const int n, const T* data_im, |
| const int height, const int width, const int kernel_h, const int kernel_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, |
| const int stride_h, const int stride_w, |
| const int width_col, const int channels, |
| T* data_col) { |
| |
| const int dkernel_h = dilation_h * (kernel_h - 1) + 1; |
| const int dkernel_w = dilation_w * (kernel_w - 1) + 1; |
| |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| int channel_in = index % channels; |
| int w_out = index / channels % width_col; |
| int h_out = index / channels / width_col; |
| int h_in = h_out * stride_h - pad_t; |
| int w_in = w_out * stride_w - pad_l; |
| T* local_data_col = data_col + |
| ((h_out * width_col) + w_out) * channels * kernel_h * kernel_w |
| + channel_in; |
| for (int i = 0; i < dkernel_h; i += dilation_h) { |
| int h = h_in + i; |
| for (int j = 0; j < dkernel_w; j += dilation_w) { |
| int w = w_in + j; |
| *local_data_col = (h >= 0 && w >= 0 && h < height && w < width) ? |
| data_im[(h * width + w) * channels + channel_in] : 0; |
| local_data_col += channels; |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| __global__ void col2im_gpu_kernel_nchw(const int n, const T* data_col, |
| const int height, const int width, |
| const int patch_h, const int patch_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, |
| const int stride_h, const int stride_w, |
| const int height_col, const int width_col, |
| T* data_im) { |
| |
| const int dpatch_h = dilation_h * (patch_h - 1) + 1; |
| const int dpatch_w = dilation_w * (patch_w - 1) + 1; |
| |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| T val = 0; |
| int w = index % width + pad_l; |
| int h = (index / width) % height + pad_t; |
| int c = index / (width * height); |
| |
| // compute the start and end of the output |
| int w_col_start = (w < dpatch_w) ? 0 : (w - dpatch_w) / stride_w + 1; |
| int w_col_end = min(w / stride_w + 1, width_col); |
| int h_col_start = (h < dpatch_h) ? 0 : (h - dpatch_h) / stride_h + 1; |
| int h_col_end = min(h / stride_h + 1, height_col); |
| |
| for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { |
| for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { |
| int h_k = (h - h_col * stride_h); |
| int w_k = (w - w_col * stride_w); |
| if (h_k % dilation_h == 0 && w_k % dilation_w == 0) { |
| h_k /= dilation_h; |
| w_k /= dilation_w; |
| int data_col_index = |
| (((c * patch_h + h_k) * patch_w + w_k) * height_col + h_col) * |
| width_col + |
| w_col; |
| val += data_col[data_col_index]; |
| } |
| } |
| } |
| data_im[index] = val; |
| } |
| } |
| |
| template <typename T> |
| __global__ void col2im_gpu_kernel_nhwc(const int n, const T* data_col, |
| const int width, const int channels, |
| const int patch_h, const int patch_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, |
| const int stride_h, const int stride_w, |
| const int height_col, const int width_col, |
| T* data_im) { |
| |
| const int dpatch_h = dilation_h * (patch_h - 1) + 1; |
| const int dpatch_w = dilation_w * (patch_w - 1) + 1; |
| |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| T val = 0; |
| int c = index % channels; |
| int w = index / channels % width + pad_l; |
| int h = index / channels / width + pad_t; |
| // compute the start and end of the output |
| int w_col_start = (w < dpatch_w) ? 0 : (w - dpatch_w) / stride_w + 1; |
| int w_col_end = min(w / stride_w + 1, width_col); |
| int h_col_start = (h < dpatch_h) ? 0 : (h - dpatch_h) / stride_h + 1; |
| int h_col_end = min(h / stride_h + 1, height_col); |
| int channels_col = patch_h * patch_w * channels; |
| |
| for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { |
| for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { |
| int h_k = h - h_col * stride_h; |
| int w_k = w - w_col * stride_w; |
| if (h_k % dilation_h == 0 && w_k % dilation_w == 0) { |
| h_k /= dilation_h; |
| w_k /= dilation_w; |
| int c_col = (h_k * patch_w + w_k) * channels + c; |
| val += data_col[(h_col * width_col + w_col) * channels_col + c_col]; |
| } |
| } |
| } |
| data_im[index] = val; |
| } |
| } |
| |
| // Ported from caffe1 |
| template <typename T, int num_axes> |
| __global__ void im2col_nd_gpu_kernel( |
| const int n, |
| const T* data_im, |
| const int* im_shape, |
| const int* col_shape, |
| const int* kernel_shape, |
| const int* pad, |
| const int* stride, |
| const int* dilation, |
| T* data_col) { |
| int d_temp[num_axes]; // NOLINT(runtime/arrays) |
| int d_iter[num_axes]; // NOLINT(runtime/arrays) |
| |
| __shared__ int shared_dilation[num_axes]; |
| __shared__ int shared_kernel_shape[num_axes]; |
| __shared__ int shared_pad[num_axes]; |
| __shared__ int shared_stride[num_axes]; |
| __shared__ int shared_col_shape[num_axes + 1]; |
| __shared__ int shared_im_shape[num_axes + 1]; |
| |
| if (threadIdx.x < num_axes) { |
| shared_dilation[threadIdx.x] = dilation[threadIdx.x]; |
| shared_kernel_shape[threadIdx.x] = kernel_shape[threadIdx.x]; |
| shared_pad[threadIdx.x] = pad[threadIdx.x]; |
| shared_stride[threadIdx.x] = stride[threadIdx.x]; |
| } |
| if (threadIdx.x < num_axes + 1) { |
| shared_col_shape[threadIdx.x] = col_shape[threadIdx.x]; |
| shared_im_shape[threadIdx.x] = im_shape[threadIdx.x]; |
| } |
| __syncthreads(); |
| |
| int i; |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| // Initialize channel_in, computed in the loop below, with intermediate |
| // computations used to compute the spatial indices. |
| int channel_in = index; |
| int channel_out = 1; |
| for (i = num_axes - 1; i >= 0; --i) { |
| d_temp[i] = channel_in % shared_col_shape[i + 1]; |
| channel_in /= shared_col_shape[i + 1]; |
| channel_out *= shared_kernel_shape[i]; |
| } |
| channel_out *= channel_in; |
| int data_col_inc = 1; |
| for (i = 0; i < num_axes; ++i) { |
| channel_out *= shared_col_shape[i + 1]; |
| channel_out += d_temp[i]; |
| d_temp[i] = d_temp[i] * shared_stride[i] - shared_pad[i]; |
| channel_in *= shared_im_shape[i + 1]; |
| channel_in += d_temp[i]; |
| data_col_inc *= shared_col_shape[i + 1]; |
| d_iter[i] = 0; |
| } |
| T* data_col_ptr = data_col + channel_out; |
| const T* data_im_ptr = data_im + channel_in; |
| bool incremented; |
| do { |
| bool in_range = true; |
| for (i = 0; i < num_axes; ++i) { |
| const int d_iter_im = d_iter[i] * shared_dilation[i] + d_temp[i]; |
| in_range &= d_iter_im >= 0 && d_iter_im < shared_im_shape[i + 1]; |
| if (!in_range) { |
| break; |
| } |
| } |
| if (in_range) { |
| int data_im_offset = d_iter[0] * shared_dilation[0]; |
| for (i = 1; i < num_axes; ++i) { |
| data_im_offset *= shared_im_shape[i + 1]; |
| data_im_offset += d_iter[i] * shared_dilation[i]; |
| } |
| *data_col_ptr = data_im_ptr[data_im_offset]; |
| } else { |
| *data_col_ptr = 0; |
| } |
| data_col_ptr += data_col_inc; |
| incremented = false; |
| for (i = num_axes - 1; i >= 0; --i) { |
| const int d_max = shared_kernel_shape[i]; |
| if (d_iter[i] == d_max - 1) { |
| d_iter[i] = 0; |
| } else { // d_iter[i] < d_max - 1 |
| ++d_iter[i]; |
| incremented = true; |
| break; |
| } |
| } // for (int i = num_axes - 1; i >= 0; --i) |
| } while (incremented); // do |
| } // CUDA_KERNEL_LOOP(index, n) |
| } |
| |
| template <typename T, int num_axes> |
| __global__ void col2im_nd_gpu_kernel( |
| const int n, |
| const T* data_col, |
| const int* im_shape, |
| const int* col_shape, |
| const int* kernel_shape, |
| const int* pad, |
| const int* stride, |
| const int* dilation, |
| T* data_im) { |
| int d_im[num_axes]; // NOLINT(runtime/arrays) |
| int d_col_iter[num_axes]; // NOLINT(runtime/arrays) |
| int d_col_start[num_axes]; // NOLINT(runtime/arrays) |
| int d_col_end[num_axes]; // NOLINT(runtime/arrays) |
| |
| __shared__ int shared_dilation[num_axes]; |
| __shared__ int shared_kernel_shape[num_axes]; |
| __shared__ int shared_pad[num_axes]; |
| __shared__ int shared_stride[num_axes]; |
| __shared__ int shared_col_shape[num_axes + 1]; |
| __shared__ int shared_im_shape[num_axes + 1]; |
| |
| if (threadIdx.x < num_axes) { |
| shared_dilation[threadIdx.x] = dilation[threadIdx.x]; |
| shared_kernel_shape[threadIdx.x] = kernel_shape[threadIdx.x]; |
| shared_pad[threadIdx.x] = pad[threadIdx.x]; |
| shared_stride[threadIdx.x] = stride[threadIdx.x]; |
| } |
| |
| if (threadIdx.x < num_axes + 1) { |
| shared_col_shape[threadIdx.x] = col_shape[threadIdx.x]; |
| shared_im_shape[threadIdx.x] = im_shape[threadIdx.x]; |
| } |
| __syncthreads(); |
| |
| CUDA_1D_KERNEL_LOOP(index, n) { |
| // Initialize channel_in, computed in the loop below, with intermediate |
| // computations used to compute the spatial indices. |
| int c_im = index; |
| // Calculate d_im (image dimensions). |
| for (int i = num_axes - 1; i >= 0; --i) { |
| d_im[i] = c_im % shared_im_shape[i + 1] + shared_pad[i]; |
| c_im /= shared_im_shape[i + 1]; |
| } |
| // Calculate col start/end indices. |
| bool done = false; |
| for (int i = 0; i < num_axes; ++i) { |
| const int kernel_extent = |
| shared_dilation[i] * (shared_kernel_shape[i] - 1) + 1; |
| d_col_start[i] = d_col_iter[i] = (d_im[i] < kernel_extent) |
| ? 0 |
| : (d_im[i] - kernel_extent) / shared_stride[i] + 1; |
| d_col_end[i] = |
| min(d_im[i] / shared_stride[i] + 1, shared_col_shape[i + 1]); |
| if (d_col_start[i] >= d_col_end[i]) { |
| // Skip computation if the dimension is 0 at any spatial axis -- |
| // final val will be 0. |
| data_im[index] = 0; |
| done = true; |
| break; // for (int i = 0; i < num_axes; ++i) |
| } |
| } |
| if (done) { |
| continue; // CUDA_KERNEL_LOOP(index, n) |
| } |
| // Loop over the col to compute the output val. |
| T val = 0; |
| bool incremented = true; |
| bool skip = false; |
| do { |
| // Compute the final offset. |
| int final_offset = 0; |
| int kernel_shape_prod = 1; |
| int kernel_index; |
| for (int i = num_axes - 1; i >= 0; --i) { |
| kernel_index = d_im[i] - d_col_iter[i] * shared_stride[i]; |
| if (kernel_index % shared_dilation[i]) { |
| skip = true; |
| break; |
| } else { |
| kernel_index /= shared_dilation[i]; |
| final_offset += kernel_index * kernel_shape_prod; |
| kernel_shape_prod *= shared_kernel_shape[i]; |
| } |
| } |
| if (!skip) { |
| final_offset += kernel_shape_prod * c_im; |
| for (int i = 0; i < num_axes; ++i) { |
| final_offset *= shared_col_shape[i + 1]; |
| final_offset += d_col_iter[i]; |
| } |
| val += data_col[final_offset]; |
| } |
| skip = false; |
| incremented = false; |
| for (int i = num_axes - 1; i >= 0; --i) { |
| const int d_max = d_col_end[i]; |
| if (d_col_iter[i] == d_max - 1) { |
| d_col_iter[i] = d_col_start[i]; |
| } else { // d_col_iter[i] < d_max - 1 |
| ++d_col_iter[i]; |
| incremented = true; |
| break; // for (int i = num_axes - 1; i >= 0; --i) |
| } |
| } // for (int i = num_axes - 1; i >= 0; --i) |
| } while (incremented); |
| data_im[index] = val; |
| } // CUDA_KERNEL_LOOP(index, n) |
| } |
| |
| } // namespace |
| |
| template <> |
| void Im2col<float, CUDAContext, StorageOrder::NCHW>( |
| const float* data_im, const int channels, |
| const int height, const int width, const int kernel_h, const int kernel_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, const int pad_b, const int pad_r, |
| const int stride_h, |
| const int stride_w, float* data_col, CUDAContext* context) { |
| |
| const int dkernel_h = dilation_h * (kernel_h - 1) + 1; |
| const int dkernel_w = dilation_w * (kernel_w - 1) + 1; |
| |
| // We are going to launch channels * height_col * width_col kernels, each |
| // kernel responsible for copying a single-channel grid. |
| int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1; |
| int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1; |
| int num_kernels = channels * height_col * width_col; |
| // NOLINT_NEXT_LINE(whitespace/operators) |
| im2col_gpu_kernel_nchw<float><<<CAFFE_GET_BLOCKS(num_kernels), |
| CAFFE_CUDA_NUM_THREADS, 0, |
| context->cuda_stream()>>>( |
| num_kernels, data_im, height, width, kernel_h, kernel_w, |
| dilation_h, dilation_w, pad_t, pad_l, stride_h, stride_w, |
| height_col, width_col, data_col); |
| } |
| |
| template <> |
| void Im2col<float, CUDAContext, StorageOrder::NHWC>( |
| const float* data_im, const int channels, |
| const int height, const int width, const int kernel_h, const int kernel_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, const int pad_b, const int pad_r, |
| const int stride_h, |
| const int stride_w, float* data_col, CUDAContext* context) { |
| |
| const int dkernel_h = dilation_h * (kernel_h - 1) + 1; |
| const int dkernel_w = dilation_w * (kernel_w - 1) + 1; |
| |
| // We are going to launch height_col * width_col * channels kernels, each |
| // kernel responsible for copying a single-channel grid. |
| int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1; |
| int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1; |
| int num_kernels = height_col * width_col * channels; |
| // NOLINT_NEXT_LINE(whitespace/operators) |
| im2col_gpu_kernel_nhwc<float><<<CAFFE_GET_BLOCKS(num_kernels), |
| CAFFE_CUDA_NUM_THREADS, 0, |
| context->cuda_stream()>>>( |
| num_kernels, data_im, height, width, kernel_h, kernel_w, |
| dilation_h, dilation_w, pad_t, pad_l, stride_h, stride_w, |
| width_col, channels, data_col); |
| } |
| |
| |
| template <> |
| void Col2im<float, CUDAContext, StorageOrder::NCHW>( |
| const float* data_col, const int channels, |
| const int height, const int width, const int kernel_h, const int kernel_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, const int pad_b, const int pad_r, |
| const int stride_h, |
| const int stride_w, float* data_im, CUDAContext* context) { |
| |
| const int dkernel_h = dilation_h * (kernel_h - 1) + 1; |
| const int dkernel_w = dilation_w * (kernel_w - 1) + 1; |
| |
| int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1; |
| int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1; |
| int num_kernels = channels * height * width; |
| // To avoid involving atomic operations, we will launch one kernel per |
| // bottom dimension, and then in the kernel add up the top dimensions. |
| col2im_gpu_kernel_nchw<float><<<CAFFE_GET_BLOCKS(num_kernels), |
| CAFFE_CUDA_NUM_THREADS, 0, |
| context->cuda_stream()>>>( |
| num_kernels, data_col, height, width, kernel_h, kernel_w, |
| dilation_h, dilation_w, |
| pad_t, pad_l, stride_h, stride_w, |
| height_col, width_col, data_im); |
| } |
| |
| template <> |
| void Col2im<float, CUDAContext, StorageOrder::NHWC>( |
| const float* data_col, const int channels, |
| const int height, const int width, const int kernel_h, const int kernel_w, |
| const int dilation_h, const int dilation_w, |
| const int pad_t, const int pad_l, const int pad_b, const int pad_r, |
| const int stride_h, |
| const int stride_w, float* data_im, CUDAContext* context) { |
| |
| const int dkernel_h = dilation_h * (kernel_h - 1) + 1; |
| const int dkernel_w = dilation_w * (kernel_w - 1) + 1; |
| |
| int height_col = (height + pad_t + pad_b - dkernel_h) / stride_h + 1; |
| int width_col = (width + pad_l + pad_r - dkernel_w) / stride_w + 1; |
| int num_kernels = height * width * channels; |
| // To avoid involving atomic operations, we will launch one kernel per |
| // bottom dimension, and then in the kernel add up the top dimensions. |
| col2im_gpu_kernel_nhwc<float><<<CAFFE_GET_BLOCKS(num_kernels), |
| CAFFE_CUDA_NUM_THREADS, 0, |
| context->cuda_stream()>>>( |
| num_kernels, data_col, width, channels, kernel_h, kernel_w, |
| dilation_h, dilation_w, |
| pad_t, pad_l, stride_h, stride_w, height_col, width_col, data_im); |
| } |
| |
| template <> |
| void Col2imNd<float, CUDAContext, StorageOrder::NCHW>( |
| const float* data_col, |
| const int* img_shape, |
| const int* col_shape, |
| const int img_size, |
| const int col_size, |
| const int* kernel_shape, |
| const int* stride, |
| const int* dilation, |
| const int* pad, |
| const int N, |
| float* data_img, |
| CUDAContext* context) { |
| CAFFE_ENFORCE_LT( |
| N, CAFFE_CUDA_NUM_THREADS, "num_axes should be smaller than block size."); |
| |
| #define COL2IM_ND_KERNEL(n) \ |
| col2im_nd_gpu_kernel<float, n> /* NOLINT_NEXT_LINE(whitespace/operators) */ \ |
| <<<CAFFE_GET_BLOCKS(img_size), \ |
| CAFFE_CUDA_NUM_THREADS, \ |
| 0, \ |
| context->cuda_stream()>>>( \ |
| img_size, \ |
| data_col, \ |
| img_shape, \ |
| col_shape, \ |
| kernel_shape, \ |
| pad, \ |
| stride, \ |
| dilation, \ |
| data_img) |
| |
| switch (N) { |
| case 1: |
| COL2IM_ND_KERNEL(1); |
| break; |
| case 2: |
| COL2IM_ND_KERNEL(2); |
| break; |
| case 3: |
| COL2IM_ND_KERNEL(3); |
| break; |
| case 4: |
| COL2IM_ND_KERNEL(4); |
| break; |
| case 5: |
| COL2IM_ND_KERNEL(5); |
| break; |
| default: |
| CAFFE_THROW( |
| "Col2imNd does not support computation with ", N, " spatial axes"); |
| } |
| } |
| |
| template <> |
| void Im2colNd<float, CUDAContext, StorageOrder::NCHW>( |
| const float* data_img, |
| const int* img_shape, |
| const int* col_shape, |
| const int img_size, |
| const int col_size, |
| const int* kernel_shape, |
| const int* stride, |
| const int* dilation, |
| const int* pad, |
| const int N, |
| float* data_col, |
| CUDAContext* context, |
| bool /*accumlate_output*/) { |
| CAFFE_ENFORCE_LT( |
| N, CAFFE_CUDA_NUM_THREADS, "num_axes should be smaller than block size."); |
| |
| #define IM2COL_ND_KERNEL(n) \ |
| im2col_nd_gpu_kernel<float, n> /* NOLINT_NEXT_LINE(whitespace/operators) */ \ |
| <<<CAFFE_GET_BLOCKS(col_size), \ |
| CAFFE_CUDA_NUM_THREADS, \ |
| 0, \ |
| context->cuda_stream()>>>( \ |
| col_size, \ |
| data_img, \ |
| img_shape, \ |
| col_shape, \ |
| kernel_shape, \ |
| pad, \ |
| stride, \ |
| dilation, \ |
| data_col) |
| |
| switch (N) { |
| case 1: |
| IM2COL_ND_KERNEL(1); |
| break; |
| case 2: |
| IM2COL_ND_KERNEL(2); |
| break; |
| case 3: |
| IM2COL_ND_KERNEL(3); |
| break; |
| case 4: |
| IM2COL_ND_KERNEL(4); |
| case 5: |
| IM2COL_ND_KERNEL(5); |
| break; |
| default: |
| CAFFE_THROW( |
| "Im2colNd does not support computation with ", N, " spatial axes"); |
| } |
| } |
| |
| template <> |
| void CopyMatrix<CUDAContext>( |
| const size_t itemsize, |
| const int M, |
| const int N, |
| const void* A, |
| const int lda, |
| void* B, |
| const int ldb, |
| CUDAContext* context) { |
| cudaMemcpy2DAsync(B, ldb * itemsize, A, lda * itemsize, N * itemsize, M, |
| cudaMemcpyDeviceToDevice, context->cuda_stream()); |
| } |
| |
| template <> |
| void CopyVector( |
| const int N, |
| const float* src, |
| float* dst, |
| CUDAContext* context) { |
| cudaMemcpyAsync( |
| dst, |
| src, |
| sizeof(float) * N, |
| cudaMemcpyDeviceToDevice, |
| context->cuda_stream()); |
| } |
| |
| namespace { |
| __global__ void rowwise_max_kernel( |
| const int rows, |
| const int cols, |
| const float* data, |
| float* out) { |
| typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce; |
| __shared__ typename BlockReduce::TempStorage temp_storage; |
| for (int rowIndex = blockIdx.x; rowIndex < rows; rowIndex += gridDim.x) { |
| float maxval = -FLT_MAX; |
| // NB: The memory accesses here are sequentialized; without unrolling |
| // the loop, there will not be any ILP. However, because we are running |
| // this kernel with a lot of threads, this should not be a big problem. |
| // However, if we reduce the number of threads to take advantage of |
| // warp-wide synchronization, this may become a problem again. |
| for (int colIndex = threadIdx.x; colIndex < cols; colIndex += blockDim.x) { |
| maxval = max(data[rowIndex * cols + colIndex], maxval); |
| } |
| maxval = BlockReduce(temp_storage).Reduce(maxval, cub::Max()); |
| if (threadIdx.x == 0) { |
| out[rowIndex] = maxval; |
| } |
| __syncthreads(); |
| } |
| } |
| |
| __global__ void colwise_max_kernel( |
| const int rows, |
| const int cols, |
| const float* data, |
| float* out) { |
| typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce; |
| __shared__ typename BlockReduce::TempStorage temp_storage; |
| for (int colIndex = blockIdx.x; colIndex < cols; colIndex += gridDim.x) { |
| float maxval = -FLT_MAX; |
| for (int rowIndex = threadIdx.x; rowIndex < rows; rowIndex += blockDim.x) { |
| maxval = max(data[rowIndex * cols + colIndex], maxval); |
| } |
| maxval = BlockReduce(temp_storage).Reduce(maxval, cub::Max()); |
| if (threadIdx.x == 0) { |
| out[colIndex] = maxval; |
| } |
| __syncthreads(); |
| } |
| } |
| |
| } // namespace |
| |
| template <> |
| void RowwiseMax( |
| const int N, |
| const int D, |
| const float* x, |
| float* y, |
| CUDAContext* context) { |
| rowwise_max_kernel<<< |
| std::min(N, CAFFE_MAXIMUM_NUM_BLOCKS), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(N, D, x, y); |
| } |
| |
| template <> |
| void ColwiseMax( |
| const int N, |
| const int D, |
| const float* x, |
| float* y, |
| CUDAContext* context) { |
| colwise_max_kernel<<< |
| std::min(D, CAFFE_MAXIMUM_NUM_BLOCKS), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(N, D, x, y); |
| } |
| |
| namespace { |
| __global__ void |
| maximum_kernel(const int N, const float alpha, const float* x, float* y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| y[i] = fmaxf(x[i], alpha); |
| } |
| } |
| } // namespace |
| |
| template <> |
| void Maximum( |
| const int N, |
| const float alpha, |
| const float* x, |
| float* y, |
| CUDAContext* context) { |
| maximum_kernel<<< |
| std::min(N, CAFFE_MAXIMUM_NUM_BLOCKS), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context->cuda_stream()>>>(N, alpha, x, y); |
| } |
| |
| } // namespace math |
| } // namespace caffe2 |