blob: f4f98cbbf44287da5de983e463f3beb4307f39ee [file] [log] [blame]
#ifndef CAFFE2_OPERATORS_NORMALIZE_OP_H_
#define CAFFE2_OPERATORS_NORMALIZE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
class NormalizeOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
NormalizeOp(const OperatorDef& def, Workspace* ws)
: Operator<Context>(def, ws) {}
bool RunOnDevice() override;
};
template <typename T, class Context>
class NormalizeGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
NormalizeGradientOp(const OperatorDef& def, Workspace* ws)
: Operator<Context>(def, ws) {}
bool RunOnDevice() override;
private:
INPUT_TAGS(INPUT, GRAD_OUT);
OUTPUT_TAGS(GRAD_IN);
};
template <typename T, class Context>
class NormalizeL1Op final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(NormalizeL1Op)
bool RunOnDevice() override {
const auto& x = Input(0);
auto* y = Output(0);
const auto* xData = x.template data<T>();
y->ResizeLike(x);
auto* yData = y->template mutable_data<T>();
const auto canonical_axis = x.canonical_axis_index(
OperatorBase::GetSingleArgument<int>("axis", -1));
const int m = x.dim32(canonical_axis);
const int n = x.size() / m;
const int sf = x.size_from_dim(canonical_axis + 1);
DoNormalize(xData, yData, m, n, sf);
return true;
}
private:
void
DoNormalize(const T* xData, T* yData, const int m, const int n, const int sf);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_NORMALIZE_OP_H_