blob: 30649f7f04bcc835186552750739197d4fa5e18a [file] [log] [blame]
#include "torch/csrc/python_headers.h"
#include <stdbool.h>
#include <unordered_map>
#include <thread>
#include <chrono>
#include <sstream>
#include <TH/TH.h>
#include <ATen/ATen.h>
#include "ATen/cuda/CUDAContext.h"
#include <THC/THCCachingAllocator.h>
#ifdef USE_NCCL
#include <nccl.h>
#endif
#include "THCP.h"
#include "torch/csrc/utils/pybind.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/cuda/python_comm.h"
using namespace torch;
THCState *state;
////////////////////////////////////////////////////////////////////////////////
// CUDA management methods
////////////////////////////////////////////////////////////////////////////////
void THCPModule_setDevice(int device)
{
THCudaCheck(cudaSetDevice(device));
}
PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
int64_t device = THPUtils_unpackLong(arg);
THCPModule_setDevice(device);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDevice_wrap(PyObject *self)
{
HANDLE_TH_ERRORS
int device;
THCudaCheck(cudaGetDevice(&device));
return PyLong_FromLong(device);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDeviceCount_wrap(PyObject *self)
{
HANDLE_TH_ERRORS
int ndevice;
if (cudaGetDeviceCount(&ndevice) != cudaSuccess) {
cudaGetLastError();
ndevice = 0;
}
return PyLong_FromLong(ndevice);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCurrentStream_wrap(PyObject *self)
{
HANDLE_TH_ERRORS
THCStream* stream = THCState_getStream(state);
return PyLong_FromVoidPtr(stream);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assert(PyLong_Check(obj), "invalid stream");
THCStream* stream = (THCStream *)PyLong_AsVoidPtr(obj);
THCState_setStream(state, stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_isDriverSufficient(PyObject *self)
{
int count;
cudaError_t err = cudaGetDeviceCount(&count);
if (err == cudaErrorInsufficientDriver) {
return PyBool_FromLong(0);
}
return PyBool_FromLong(1);
}
PyObject * THCPModule_getDriverVersion(PyObject *self)
{
int driverVersion = -1;
cudaError_t err = cudaDriverGetVersion(&driverVersion);
if (err != cudaSuccess) {
PyErr_Format(PyExc_RuntimeError,
"Error calling cudaDriverGetVersion: %d %s",
err, cudaGetErrorString(err));
return NULL;
}
return PyLong_FromLong((int64_t) driverVersion);
}
PyObject * THCPModule_getCompiledVersion(PyObject *self)
{
return PyLong_FromLong((long) CUDA_VERSION);
}
PyObject * THCPModule_getRNGState(PyObject *_unused)
{
using namespace at;
using namespace torch::autograd;
HANDLE_TH_ERRORS
auto tensor = VariableType::getType(CPU(kByte))->tensor();
THCRandom_getRNGState(state, (THByteTensor*)tensor.unsafeGetTH(false));
return THPVariable_Wrap(tensor);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_setRNGState(PyObject *_unused, PyObject *obj)
{
HANDLE_TH_ERRORS
if (!THPVariable_Check(obj) || THPVariable_UnpackData(obj).type().ID() != at::TypeID::CPUByte) {
throw TypeError("set_rng_state expects a torch.ByteTensor, but got %s",
Py_TYPE(obj)->tp_name);
}
auto& tensor = THPVariable_UnpackData(obj);
THCRandom_setRNGState(state, (THByteTensor*)tensor.unsafeGetTH(false));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_manualSeed(PyObject *_unused, PyObject *seed)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(seed), "manual_seed expected a long, "
"but got %s", THPUtils_typename(seed));
THCRandom_manualSeed(state, THPUtils_unpackLong(seed));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_manualSeedAll(PyObject *_unused, PyObject *seed)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(seed), "manual_seed expected a long, "
"but got %s", THPUtils_typename(seed));
THCRandom_manualSeedAll(state, THPUtils_unpackLong(seed));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_seed(PyObject *_unused)
{
HANDLE_TH_ERRORS
return THPUtils_packUInt64(THCRandom_seed(state));
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_seedAll(PyObject *_unused)
{
HANDLE_TH_ERRORS
return THPUtils_packUInt64(THCRandom_seedAll(state));
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_initialSeed(PyObject *_unused)
{
HANDLE_TH_ERRORS
return THPUtils_packUInt64(THCRandom_initialSeed(state));
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaHostAllocator(PyObject *_unused)
{
HANDLE_TH_ERRORS
THAllocator* allocator = THCState_getCudaHostAllocator(state);
return PyLong_FromVoidPtr(allocator);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSynchronize(PyObject *_unused)
{
HANDLE_TH_ERRORS
THCudaCheck(cudaDeviceSynchronize());
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
THC_sleep(LIBRARY_STATE THPUtils_unpackLong(cycles));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// We need to ensure that as long as a thread will NEVER loose the GIL as long as
// it holds the CUDA mutex. Otherwise another thread might be scheduled and try to
// e.g. allocate a new tensor which will cause a deadlock. It's enough to have a
// single global, because it can be only set once (cudaMutex is not recursive)
// by the thread that owns the mutex (obviously there can be only one such thread).
static PyGILState_STATE cudaMutexGILState;
PyObject * THCPModule_cudaLockMutex(PyObject *module)
{
auto mutex = THCCachingAllocator_getCudaFreeMutex();
// This has to be a busy loop because we **absolutely need to** hold the GIL
// or it's a recipe for a deadlock otherwise (if we let other Python threads
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
// because it happens deep within THC).
while (true) {
if (mutex->try_lock())
break;
{
AutoNoGIL no_gil;
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
}
cudaMutexGILState = PyGILState_Ensure();
Py_RETURN_NONE;
}
PyObject * THCPModule_cudaUnlockMutex(PyObject *module)
{
auto mutex = THCCachingAllocator_getCudaFreeMutex();
PyGILState_Release(cudaMutexGILState);
mutex->unlock();
Py_RETURN_NONE;
}
PyObject * THCPModule_emptyCache(PyObject *_unused)
{
HANDLE_TH_ERRORS
THCCachingAllocator_emptyCache();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_memoryAllocated(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to memory_allocated");
int device = (int) THPUtils_unpackLong(arg);
auto memory_allocated = THCCachingAllocator_currentMemoryAllocated(device);
return PyLong_FromUnsignedLongLong(memory_allocated);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_maxMemoryAllocated(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to max_memory_allocated");
int device = (int) THPUtils_unpackLong(arg);
auto max_memory_allocated = THCCachingAllocator_maxMemoryAllocated(device);
return PyLong_FromUnsignedLongLong(max_memory_allocated);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_memoryCached(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to memory_cached");
int device = (int) THPUtils_unpackLong(arg);
auto memory_cached = THCCachingAllocator_currentMemoryCached(device);
return PyLong_FromUnsignedLongLong(memory_cached);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_maxMemoryCached(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to max_memory_cached");
int device = (int) THPUtils_unpackLong(arg);
auto max_memory_cached = THCCachingAllocator_maxMemoryCached(device);
return PyLong_FromUnsignedLongLong(max_memory_cached);
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Cuda module initialization
////////////////////////////////////////////////////////////////////////////////
static void bindCudaDeviceProperties(PyObject* module) {
// Add class and method to torch.cuda
auto m = py::handle(module).cast<py::module>();
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
.def_readonly("name", &cudaDeviceProp::name)
.def_readonly("major", &cudaDeviceProp::major)
.def_readonly("minor", &cudaDeviceProp::minor)
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
.def_readonly("multi_processor_count", &cudaDeviceProp::multiProcessorCount)
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
.def("__repr__", [](const cudaDeviceProp &prop) {
std::ostringstream stream;
stream << "_CudaDeviceProperties(name='" << prop.name << "', major=" << prop.major
<< ", minor=" << prop.minor << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
<< "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
return stream.str();
});
m.def("_get_device_properties", [](int device) -> cudaDeviceProp * {
return at::cuda::getDeviceProperties(device);
}, py::return_value_policy::reference);
}
// Callback for python part. Used for additional initialization of python classes
static PyObject * THCPModule_initExtension(PyObject *self)
{
HANDLE_TH_ERRORS
state = at::globalContext().lazyInitCUDA();
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
if (!m) throw python_error();
// Register Storage Python objects with DynamicTypes.cpp
THCPDoubleStorage_postInit(m);
THCPFloatStorage_postInit(m);
THCPHalfStorage_postInit(m);
THCPLongStorage_postInit(m);
THCPIntStorage_postInit(m);
THCPShortStorage_postInit(m);
THCPCharStorage_postInit(m);
THCPByteStorage_postInit(m);
#ifdef USE_MAGMA
THCMagma_init(state);
bool has_magma = true;
#else
bool has_magma = false;
#endif
#ifdef CUDA_HALF_TENSOR
bool has_half = true;
#else
bool has_half = false;
#endif
auto set_module_attr = [&](const char* name, PyObject* v) {
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
set_module_attr("has_magma", has_magma ? Py_True : Py_False);
set_module_attr("has_half", has_half ? Py_True : Py_False);
auto _state_cdata = THPObjectPtr(PyLong_FromVoidPtr(state));
if (!_state_cdata) throw python_error();
set_module_attr("_state_cdata", _state_cdata.get());
bindCudaDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
#ifdef USE_NCCL
#include "python_nccl.h"
void THCPModule_useNccl()
{
// Use NCCL to ensure that the symbols are loaded
ncclUniqueId uniqueId;
ncclGetUniqueId(&uniqueId);
}
#endif
PyObject * THCPModule_getCurrentBlasHandle_wrap(PyObject *self)
{
HANDLE_TH_ERRORS
cublasHandle_t handle = THCState_getCurrentBlasHandle(state);
return PyLong_FromVoidPtr(handle);
END_HANDLE_TH_ERRORS
}
static struct PyMethodDef _THCPModule_methods[] = {
{"_cuda_init", (PyCFunction)THCPModule_initExtension, METH_NOARGS, NULL},
{"_cuda_setDevice", (PyCFunction)THCPModule_setDevice_wrap, METH_O, NULL},
{"_cuda_getDevice", (PyCFunction)THCPModule_getDevice_wrap, METH_NOARGS, NULL},
{"_cuda_getDeviceCount", (PyCFunction)THCPModule_getDeviceCount_wrap, METH_NOARGS, NULL},
{"_cuda_getCurrentStream", (PyCFunction)THCPModule_getCurrentStream_wrap, METH_NOARGS, NULL},
{"_cuda_getCurrentBlasHandle", (PyCFunction)THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, NULL},
{"_cuda_setStream", (PyCFunction)THCPModule_setStream_wrap, METH_O, NULL},
{"_cuda_isDriverSufficient", (PyCFunction)THCPModule_isDriverSufficient, METH_NOARGS, NULL},
{"_cuda_getDriverVersion", (PyCFunction)THCPModule_getDriverVersion, METH_NOARGS, NULL},
{"_cuda_getCompiledVersion", (PyCFunction)THCPModule_getCompiledVersion, METH_NOARGS, NULL},
{"_cuda_getRNGState", (PyCFunction)THCPModule_getRNGState, METH_NOARGS, NULL},
{"_cuda_setRNGState", (PyCFunction)THCPModule_setRNGState, METH_O, NULL},
{"_cuda_emptyCache", (PyCFunction) THCPModule_emptyCache, METH_NOARGS, NULL},
{"_cuda_memoryAllocated", (PyCFunction) THCPModule_memoryAllocated, METH_O, NULL},
{"_cuda_maxMemoryAllocated", (PyCFunction) THCPModule_maxMemoryAllocated, METH_O, NULL},
{"_cuda_memoryCached", (PyCFunction) THCPModule_memoryCached, METH_O, NULL},
{"_cuda_maxMemoryCached", (PyCFunction) THCPModule_maxMemoryCached, METH_O, NULL},
{"_cuda_manualSeed", (PyCFunction)THCPModule_manualSeed, METH_O, NULL},
{"_cuda_manualSeedAll", (PyCFunction)THCPModule_manualSeedAll, METH_O, NULL},
{"_cuda_seed", (PyCFunction)THCPModule_seed, METH_NOARGS, NULL},
{"_cuda_seedAll", (PyCFunction)THCPModule_seedAll, METH_NOARGS, NULL},
{"_cuda_initialSeed", (PyCFunction)THCPModule_initialSeed, METH_NOARGS, NULL},
{"_cuda_cudaHostAllocator", (PyCFunction)THCPModule_cudaHostAllocator, METH_NOARGS, NULL},
{"_cuda_synchronize", (PyCFunction)THCPModule_cudaSynchronize, METH_NOARGS, NULL},
{"_cuda_sleep", (PyCFunction)THCPModule_cudaSleep, METH_O, NULL},
{"_cuda_lock_mutex", (PyCFunction)THCPModule_cudaLockMutex, METH_NOARGS, NULL},
{"_cuda_unlock_mutex", (PyCFunction)THCPModule_cudaUnlockMutex, METH_NOARGS, NULL},
#ifdef USE_NCCL
{"_nccl_version", (PyCFunction)THCPModule_nccl_version, METH_NOARGS, NULL},
{"_nccl_unique_id", (PyCFunction)THCPModule_nccl_unique_id, METH_NOARGS, NULL},
{"_nccl_init_rank", (PyCFunction)THCPModule_nccl_init_rank, METH_VARARGS, NULL},
{"_nccl_reduce", (PyCFunction)THCPModule_nccl_reduce, METH_VARARGS, NULL},
{"_nccl_all_reduce", (PyCFunction)THCPModule_nccl_all_reduce, METH_VARARGS, NULL},
{"_nccl_broadcast", (PyCFunction)THCPModule_nccl_broadcast, METH_VARARGS, NULL},
{"_nccl_all_gather", (PyCFunction)THCPModule_nccl_all_gather, METH_VARARGS, NULL},
{"_nccl_reduce_scatter", (PyCFunction)THCPModule_nccl_reduce_scatter, METH_VARARGS, NULL},
#endif
{NULL}
};
PyMethodDef* THCPModule_methods() {
return _THCPModule_methods;
}
namespace torch { namespace cuda {
void initModule(PyObject *module) {
python::initCommMethods(module);
}
}}