blob: 7d742c2f1e8dd3780a01060ab90780f4bb65cba4 [file] [log] [blame]
#include <benchmark/benchmark.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/torch.h>
#include <immintrin.h>
namespace torch {
namespace jit {
namespace tensorexpr {
class ParallelAdd : public benchmark::Fixture {
public:
void SetUp(const benchmark::State& state) override {
at::set_num_threads(4);
torch::manual_seed(0x12345678);
M = state.range(0);
A = torch::randn({M});
B = torch::randn({M});
C = torch::zeros({M});
}
void TearDown(benchmark::State& state) override {
state.counters["tasks"] = benchmark::Counter(uint64_t(state.iterations()) * M,
benchmark::Counter::kIsRate);
}
int M;
at::Tensor A;
at::Tensor B;
at::Tensor C;
};
BENCHMARK_DEFINE_F(ParallelAdd, Simple)(benchmark::State& state) {
KernelScope kernel_scope;
ExecutionCounter counter(llvm_codegen_parallel_dispatched);
Placeholder a_buf("a", kFloat, {M});
Placeholder b_buf("b", kFloat, {M});
Tensor* c_tensor = Compute(
"c", {{M, "m"}}, [&](const VarHandle& m) {
return a_buf.load(m) + b_buf.load(m);
});
LoopNest loop_nest({c_tensor});
auto const& loops = loop_nest.getLoopStmtsFor(c_tensor);
For* m = loops[0];
m->set_parallel();
loop_nest.prepareForCodegen();
Stmt* stmt = loop_nest.root_stmt();
LLVMCodeGen cg(stmt, {c_tensor, a_buf, b_buf});
float* a_ptr = A.data_ptr<float>();
float* b_ptr = B.data_ptr<float>();
float* c_ptr = C.data_ptr<float>();
std::vector<void*> args({c_ptr, a_ptr, b_ptr});
cg.value<int>(args);
int count = counter.elapsed_value();
TORCH_CHECK(count > 0);
for (int i = 0; i < M; i++) {
float diff = fabs(a_ptr[i] + b_ptr[i] - c_ptr[i]);
TORCH_CHECK(diff < 1e-5);
}
for (auto _ : state) {
cg.value<int>(args);
}
}
BENCHMARK_REGISTER_F(ParallelAdd, Simple)->Args({1 << 16});
} // namespace tensorexpr
} // namespace jit
} // namespace torch