| #include "caffe2/operators/log1p_op.h" | 
 | #include "caffe2/utils/eigen_utils.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | template <> | 
 | template <typename T> | 
 | bool Log1pGradientFunctor<CPUContext>::Forward( | 
 |     const std::vector<int>& X_dims, | 
 |     const std::vector<int>& /* dY_dims */, | 
 |     const T* X, | 
 |     const T* dY, | 
 |     T* dX, | 
 |     CPUContext* /* context */) const { | 
 |   const int size = std::accumulate( | 
 |       // NOLINTNEXTLINE(modernize-use-transparent-functors) | 
 |       X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); | 
 |   ConstEigenVectorArrayMap<T> dY_arr(dY, size); | 
 |   ConstEigenVectorArrayMap<T> X_arr(X, size); | 
 |   EigenVectorMap<T>(dX, size) = dY_arr / (T(1) + X_arr); | 
 |   return true; | 
 | } | 
 |  | 
 | REGISTER_CPU_OPERATOR( | 
 |     Log1p, | 
 |     UnaryElementwiseOp<TensorTypes<float>, CPUContext, Log1pFunctor<CPUContext>>); | 
 | REGISTER_CPU_OPERATOR( | 
 |     Log1pGradient, | 
 |     BinaryElementwiseOp< | 
 |         TensorTypes<float>, | 
 |         CPUContext, | 
 |         Log1pGradientFunctor<CPUContext>>); | 
 |  | 
 | OPERATOR_SCHEMA(Log1p) | 
 |     .NumInputs(1) | 
 |     .NumOutputs(1) | 
 |     .IdenticalTypeAndShape() | 
 |     .SetDoc(R"DOC( | 
 | Calculates Log1p of the given input tensor element-wise. This | 
 | operation can be done in an in-place fashion too, by providing the same input | 
 | and output blobs. | 
 |  | 
 | Github Link: | 
 | - https://github.com/pytorch/pytorch/blob/main/caffe2/operators/log1p_op.cc | 
 | )DOC") | 
 |     .Input(0, "input", "Input data blob to be operated on.") | 
 |     .Output(0, "output", "Output data blob with same shape as input") | 
 |     .InheritOnnxSchema(); | 
 |  | 
 | OPERATOR_SCHEMA(Log1pGradient) | 
 |     .NumInputs(2) | 
 |     .NumOutputs(1) | 
 |     .IdenticalTypeAndShapeOfInput(0); | 
 |  | 
 | namespace { | 
 |  | 
 | class GetLog1pGradient : public GradientMakerBase { | 
 |   using GradientMakerBase::GradientMakerBase; | 
 |   std::vector<OperatorDef> GetGradientDefs() override { | 
 |     return SingleGradientDef( | 
 |         "Log1pGradient", | 
 |         "", | 
 |         std::vector<std::string>{I(0), GO(0)}, | 
 |         std::vector<std::string>{GI(0)}); | 
 |   } | 
 | }; | 
 |  | 
 | } // namespace | 
 |  | 
 | REGISTER_GRADIENT(Log1p, GetLog1pGradient); | 
 |  | 
 | } // namespace caffe2 |