blob: 027b7db3134781af95e04c960729aedcd2047bd4 [file] [log] [blame]
# See README.md in this directory for more guidance
# Temporary type cast operators. These are needed to trace type-casts now since
# Type's are not supported in the IR. Instead, we call down to these
# specialized operators for each datatype.
# TODO: remove when we have Type support in the IR
- func: _cast_Byte(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cast_Char(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cast_Double(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cast_Float(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cast_Int(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cast_Long(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cast_Short(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cast_Half(Tensor self, bool non_blocking=false) -> Tensor
variants: function, method
- func: _cudnn_rnn_flatten_weight(TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, bool bidirectional) -> Tensor
variants: function
dispatch:
CUDA: _cudnn_rnn_flatten_weight
- func: _cudnn_rnn(Tensor input, TensorList weight, int64_t weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntList batch_sizes, BoolTensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
variants: function
dispatch:
CUDA: _cudnn_rnn
- func: _cudnn_rnn_backward(Tensor input, TensorList weight, int64_t weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntList batch_sizes, BoolTensor? dropout_state, Tensor reserve, std::array<bool,4> output_mask) -> (Tensor, Tensor, Tensor, TensorList)
variants: function
dispatch:
CUDA: _cudnn_rnn_backward
- func: _cudnn_init_dropout_state(Type self_ty, double dropout, bool train, int64_t dropout_seed) -> Tensor
variants: function
dispatch:
CUDA: _cudnn_init_dropout_state
- func: abs(Tensor self) -> Tensor
- func: abs_(Tensor self) -> Tensor
dispatch:
CPU: _abs__cpu
CUDA: _abs__cuda
- func: abs_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _abs_out_cpu
CUDA: _abs_out_cuda
- func: acos(Tensor self) -> Tensor
- func: acos_(Tensor self) -> Tensor
dispatch:
CPU: _acos__cpu
CUDA: _acos__cuda
- func: acos_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _acos_out_cpu
CUDA: _acos_out_cuda
- func: avg_pool1d(Tensor self, IntList[1] kernel_size, IntList[1] stride={}, IntList[1] padding=0, bool ceil_mode=false, bool count_include_pad=true) -> Tensor
variants: function
- func: adaptive_avg_pool1d(Tensor self, IntList[1] output_size) -> Tensor
variants: function
- func: adaptive_max_pool1d(Tensor self, IntList[1] output_size) -> (Tensor, Tensor)
variants: function
- func: allclose(Tensor self, Tensor other, double rtol=1e-5, double atol=1e-8, bool equal_nan=False) -> bool
device_guard: false
- func: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor
- func: addmv_(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor
- func: addmv_out(Tensor result, Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: function
- func: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
- func: addr_(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: method
- func: addr_out(Tensor result, Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: function
- func: all(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
- func: all_out(Tensor result, Tensor self, int64_t dim, bool keepdim=false) -> Tensor
variants: function
- func: any(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
- func: any_out(Tensor result, Tensor self, int64_t dim, bool keepdim=false) -> Tensor
variants: function
- func: arange(Scalar start, Scalar end, TensorOptions options={}) -> Tensor
variants: function
- func: arange(Scalar start, Scalar end, Scalar step, TensorOptions options={}) -> Tensor
variants: function
- func: arange_out(Tensor result, Scalar start, Scalar end) -> Tensor
variants: function
- func: arange_out(Tensor result, Scalar start, Scalar end, Scalar step) -> Tensor
variants: function
- func: arange(Scalar end, TensorOptions options={}) -> Tensor
variants: function
- func: arange_out(Tensor result, Scalar end) -> Tensor
variants: function
- func: arange(Type dtype, Scalar start, Scalar end, Scalar step=1) -> Tensor
variants: function
deprecated: true
- func: arange(Type dtype, Scalar end) -> Tensor
variants: function
deprecated: true
# This function is a temporary hack to allow tracing of arange like constructs with dynamic
# bounds on arange. Normal arange is not traceable because it does not take any tensor inputs;
# if the range you need is based on another tensor, calling this function directly will
# preserve tracing. Get rid of this when arange can directly take tensors for bounds
# (so that it can be traced directly).
- func: _dim_arange(Tensor like, int64_t dim) -> Tensor
variants: function
# `argmin` and `argmax` are exposed in C++ but not in Python, where we only
# expose `_argmin` and `_argmax` (which call the first versions). In Python, we
# then define our own `argmax` and `argmin` that handle passing `dim=None`,
# which gets the argmax/argmin of the flattened array.
- func: argmax(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
- func: argmax(Tensor self) -> Tensor
- func: _argmax(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
- func: argmin(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
- func: argmin(Tensor self) -> Tensor
- func: _argmin(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
# The actual implementations live in Declarations.cwrap. These are just to
# provide default values for storage_offset=self.storage_offset()
- func: as_strided(Tensor self, IntList size, IntList stride) -> Tensor
- func: as_strided_(Tensor self, IntList size, IntList stride) -> Tensor
- func: asin(Tensor self) -> Tensor
- func: asin_(Tensor self) -> Tensor
dispatch:
CPU: _asin__cpu
CUDA: _asin__cuda
- func: asin_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _asin_out_cpu
CUDA: _asin_out_cuda
- func: atan(Tensor self) -> Tensor
- func: atan_(Tensor self) -> Tensor
dispatch:
CPU: _atan__cpu
CUDA: _atan__cuda
- func: atan_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _atan_out_cpu
CUDA: _atan_out_cuda
- func: bartlett_window(int64_t window_length, TensorOptions options={}) -> Tensor
variants: function
- func: bartlett_window(int64_t window_length, bool periodic, TensorOptions options={}) -> Tensor
variants: function
- func: batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, double momentum, double eps, bool cudnn_enabled) -> Tensor
variants: function
- func: bernoulli(Tensor self, Tensor p, Generator* generator=nullptr) -> Tensor
- func: bernoulli(Tensor self, double p, Generator* generator=nullptr) -> Tensor
- func: bernoulli(Tensor self) -> Tensor
- func: bernoulli_(Tensor self, Tensor p, Generator* generator=nullptr) -> Tensor
- func: bernoulli_(Tensor self, double p, Generator* generator=nullptr) -> Tensor
- func: bernoulli_(Tensor self) -> Tensor
- func: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias) -> Tensor
variants: function
- func: bincount(Tensor self, Tensor? weights={}, int64_t minlength=0) -> Tensor
dispatch:
CPU: _bincount_cpu
CUDA: _bincount_cuda
- func: blackman_window(int64_t window_length, TensorOptions options={}) -> Tensor
variants: function
- func: blackman_window(int64_t window_length, bool periodic, TensorOptions options={}) -> Tensor
variants: function
- func: cat(TensorList tensors, int64_t dim=0) -> Tensor
variants: function
- func: cat_out(Tensor result, TensorList tensors, int64_t dim=0) -> Tensor
variants: function
- func: ceil(Tensor self) -> Tensor
- func: ceil_(Tensor self) -> Tensor
dispatch:
CPU: _ceil__cpu
CUDA: _ceil__cuda
- func: ceil_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _ceil_out_cpu
CUDA: _ceil_out_cuda
- func: chunk(Tensor self, int64_t chunks, int64_t dim=0) -> TensorList
- func: cudnn_is_acceptable(Tensor self) -> bool
variants: function
device_guard: false
- func: convolution(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding, int64_t groups) -> Tensor
variants: function
- func: _convolution(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor
variants: function
- func: _convolution_nogroup(Tensor input, Tensor weight, Tensor? bias, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding) -> Tensor
variants: function
# NB: We MUST call the input self, otherwise codegen will attempt to
# dispatch on ggI... which might be undefined.
- func: _convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self, IntList stride, IntList padding, IntList dilation, bool transposed, IntList output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled, std::array<bool,3> output_mask) -> (Tensor, Tensor, Tensor)
variants: function
- func: conv1d(Tensor input, Tensor weight, Tensor bias={}, IntList[1] stride=1, IntList[1] padding=0, IntList[1] dilation=1, int64_t groups=1) -> Tensor
variants: function
- func: conv2d(Tensor input, Tensor weight, Tensor bias={}, IntList[2] stride=1, IntList[2] padding=0, IntList[2] dilation=1, int64_t groups=1) -> Tensor
variants: function
- func: conv3d(Tensor input, Tensor weight, Tensor bias={}, IntList[3] stride=1, IntList[3] padding=0, IntList[3] dilation=1, int64_t groups=1) -> Tensor
variants: function
- func: conv_tbc(Tensor self, Tensor weight, Tensor bias, int64_t pad) -> Tensor
- func: conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int64_t pad) -> (Tensor, Tensor, Tensor)
# NB: we inherit the goofy argument order from PyTorch torch.nn.functional
- func: conv_transpose1d(Tensor input, Tensor weight, Tensor bias={}, IntList[1] stride=1, IntList[1] padding=0, IntList[1] output_padding=0, int64_t groups=1, IntList[1] dilation=1) -> Tensor
variants: function
- func: conv_transpose2d(Tensor input, Tensor weight, Tensor bias={}, IntList[2] stride=1, IntList[2] padding=0, IntList[2] output_padding=0, int64_t groups=1, IntList[2] dilation=1) -> Tensor
variants: function
- func: conv_transpose3d(Tensor input, Tensor weight, Tensor bias={}, IntList[3] stride=1, IntList[3] padding=0, IntList[3] output_padding=0, int64_t groups=1, IntList[3] dilation=1) -> Tensor
variants: function
- func: cos(Tensor self) -> Tensor
- func: cos_(Tensor self) -> Tensor
dispatch:
CPU: _cos__cpu
CUDA: _cos__cuda
- func: cos_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _cos_out_cpu
CUDA: _cos_out_cuda
- func: cosh(Tensor self) -> Tensor
- func: cosh_(Tensor self) -> Tensor
dispatch:
CPU: _cosh__cpu
CUDA: _cosh__cuda
- func: cosh_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _cosh_out_cpu
CUDA: _cosh_out_cuda
- func: cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, double margin=0.0, int64_t reduction=Reduction::ElementwiseMean) -> Tensor
variants: function
- func: cudnn_affine_grid_generator(Tensor theta, int64_t N, int64_t C, int64_t H, int64_t W) -> Tensor
return:
- type: Tensor
name: grid
variants: function
dispatch:
CUDA: cudnn_affine_grid_generator_forward
# TODO: Why do I have to call this grad?!
- func: cudnn_affine_grid_generator_backward(Tensor grad, int64_t N, int64_t C, int64_t H, int64_t W)
return:
- type: Tensor
name: grad_theta
variants: function
dispatch:
CUDA: cudnn_affine_grid_generator_backward
- func: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, double exponential_average_factor, double epsilon) -> (Tensor, Tensor, Tensor)
variants: function
dispatch:
CUDA: cudnn_batch_norm
# NB: You can only use this if you used cudnn_batch_norm training=True
- func: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, double epsilon) -> (Tensor, Tensor, Tensor)
variants: function
dispatch:
CUDA: cudnn_batch_norm_backward
- func: cudnn_convolution(Tensor self, Tensor weight, Tensor? bias, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution
- func: cudnn_convolution_backward_input(IntList self_size, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution_backward_input
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic, std::array<bool,3> output_mask) -> (Tensor, Tensor, Tensor)
variants: function
dispatch:
CUDA: cudnn_convolution_backward
- func: cudnn_convolution_backward_bias(Tensor grad_output) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution_backward_bias
- func: cudnn_convolution_backward_weight(IntList weight_size, Tensor grad_output, Tensor self, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution_backward_weight
- func: cudnn_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, IntList padding, IntList output_padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution_transpose
# NB: output_padding not strictly needed here, but it's helpful for the double
# backwards
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, IntList padding, IntList output_padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic, std::array<bool,3> output_mask) -> (Tensor, Tensor, Tensor)
variants: function
dispatch:
CUDA: cudnn_convolution_transpose_backward
- func: cudnn_convolution_transpose_backward_bias(Tensor grad_output) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution_backward_bias
- func: cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution_transpose_backward_input
- func: cudnn_convolution_transpose_backward_weight(IntList weight_size, Tensor grad_output, Tensor self, IntList padding, IntList stride, IntList dilation, int64_t groups, bool benchmark, bool deterministic) -> Tensor
variants: function
dispatch:
CUDA: cudnn_convolution_transpose_backward_weight
# NB: input is special cased in a way I don't quite understand
- func: cudnn_grid_sampler(Tensor self, Tensor grid)
return:
- type: Tensor
name: output
variants: function
dispatch:
CUDA: cudnn_grid_sampler_forward
- func: cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output)
return:
- type: Tensor
name: grad_self
- type: Tensor
name: grad_grid
variants: function
dispatch:
CUDA: cudnn_grid_sampler_backward
# FIXME: These could be combined as optional<ScalarType> but for https://github.com/pytorch/pytorch/issues/6593.
- func: cumsum(Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
- func: cumsum(Tensor self, int64_t dim) -> Tensor
- func: cumsum_out(Tensor result, Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
variants: function
- func: cumsum_out(Tensor result, Tensor self, int64_t dim) -> Tensor
variants: function
# FIXME: These could be combined as optional<ScalarType> but for https://github.com/pytorch/pytorch/issues/6593.
- func: cumprod(Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
- func: cumprod(Tensor self, int64_t dim) -> Tensor
- func: cumprod_out(Tensor result, Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
variants: function
- func: cumprod_out(Tensor result, Tensor self, int64_t dim) -> Tensor
variants: function
- func: det(Tensor self) -> Tensor
- func: diagflat(Tensor self, int64_t offset=0) -> Tensor
variants: function
- func: diagonal(Tensor self, int64_t offset=0, int64_t dim1=0, int64_t dim2=1) -> Tensor
- func: dot(Tensor self, Tensor tensor) -> Tensor
- func: dot_out(Tensor result, Tensor self, Tensor tensor) -> Tensor
variants: function
- func: einsum(std::string equation, TensorList tensors) -> Tensor
variants: function
- func: embedding(Tensor weight, IndexTensor indices, int64_t padding_idx=-1, bool scale_grad_by_freq=false, bool sparse=false) -> Tensor
variants: function
- func: embedding_backward(Tensor grad, IndexTensor indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq, bool sparse) -> Tensor
variants: function
- func: embedding_dense_backward(Tensor grad, IndexTensor indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) -> Tensor
variants: function
dispatch:
CPU: embedding_dense_backward_cpu
CUDA: embedding_dense_backward_cuda
- func: embedding_renorm_(Tensor self, IndexTensor indices, double max_norm, double norm_type) -> Tensor
variants: function
dispatch:
CPU: embedding_renorm_cpu_
CUDA: embedding_renorm_cuda_
- func: embedding_sparse_backward(Tensor grad, IndexTensor indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) -> Tensor
variants: function
# NOTE [ embedding_bag Native Functions ]
# The `_embedding_bag.*` variants assume that input tensors except for `weight`,
# e.g. `indices` and `offsets` (and `offset2bag`), are contiguous.
# We really only need to enforce this for `_embedding_bag` (the forward) because
# the backward inputs are the same as forward ones.
# The above `embedding_bag` wrapper is created to achieve this, e.g.,
# applying indices = indices.contiguous().
# The backward functions apply a check that these input tensors are contiguous.
- func: embedding_bag(Tensor weight, IndexTensor indices, IndexTensor offsets, bool scale_grad_by_freq=false, int64_t mode=0, bool sparse=false) -> (Tensor, Tensor, Tensor, Tensor)
variants: function
- func: _embedding_bag(Tensor weight, IndexTensor indices, IndexTensor offsets, bool scale_grad_by_freq=false, int64_t mode=0, bool sparse=false) -> (Tensor, Tensor, Tensor, Tensor)
variants: function
dispatch:
CPU: _embedding_bag_cpu
CUDA: _embedding_bag_cuda
- func: _embedding_bag_backward(Tensor grad, IndexTensor indices, IndexTensor offsets, IndexTensor offset2bag, IndexTensor bag_size, IndexTensor maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, bool sparse) -> Tensor
variants: function
- func: _embedding_bag_sparse_backward(Tensor grad, IndexTensor indices, IndexTensor offsets, IndexTensor offset2bag, IndexTensor bag_size, int64_t num_weights, bool scale_grad_by_freq, int64_t mode) -> Tensor
variants: function
- func: _embedding_bag_dense_backward(Tensor grad, IndexTensor indices, IndexTensor offsets, IndexTensor offset2bag, IndexTensor bag_size, IndexTensor maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode) -> Tensor
variants: function
dispatch:
CPU: _embedding_bag_dense_backward_cpu
CUDA: _embedding_bag_dense_backward_cuda
- func: empty(IntList size, TensorOptions options={}) -> Tensor
variants: function
- func: empty_out(Tensor result, IntList size) -> Tensor
variants: function
- func: empty_like(Tensor self) -> Tensor
variants: function
- func: empty_like(Tensor self, *, TensorOptions options) -> Tensor
variants: function
- func: empty(Type dtype, IntList size) -> Tensor
variants: function
deprecated: true
- func: erf(Tensor self) -> Tensor
- func: erf_(Tensor self) -> Tensor
dispatch:
CPU: _erf__cpu
CUDA: _erf__cuda
- func: erf_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _erf_out_cpu
CUDA: _erf_out_cuda
- func: erfc(Tensor self) -> Tensor
- func: erfc_(Tensor self) -> Tensor
dispatch:
CPU: _erfc__cpu
CUDA: _erfc__cuda
- func: erfc_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _erfc_out_cpu
CUDA: _erfc_out_cuda
- func: exp(Tensor self) -> Tensor
- func: exp_(Tensor self) -> Tensor
dispatch:
CPU: _exp__cpu
CUDA: _exp__cuda
- func: exp_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _exp_out_cpu
CUDA: _exp_out_cuda
- func: expm1(Tensor self) -> Tensor
- func: expm1_(Tensor self) -> Tensor
dispatch:
CPU: _expm1__cpu
CUDA: _expm1__cuda
- func: expm1_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _expm1_out_cpu
CUDA: _expm1_out_cuda
- func: expand(Tensor self, IntList size, *, bool implicit=false) -> Tensor
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
- func: expand_as(Tensor self, Tensor other) -> Tensor
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
- func: eye(int64_t n, TensorOptions options={}) -> Tensor
variants: function
- func: eye(int64_t n, int64_t m, TensorOptions options={}) -> Tensor
variants: function
- func: eye_out(Tensor result, int64_t n) -> Tensor
variants: function
dispatch:
CPU: eye_out_cpu
CUDA: eye_out_cuda
- func: eye_out(Tensor result, int64_t n, int64_t m) -> Tensor
variants: function
dispatch:
CPU: eye_out_cpu
CUDA: eye_out_cuda
- func: eye(Type dtype, int64_t n, int64_t m=-1) -> Tensor
variants: function
deprecated: true
- func: flatten(Tensor self, int64_t start_dim=0, int64_t end_dim=-1) -> Tensor
- func: fill_(Tensor self, Scalar value) -> Tensor
- func: fill_(Tensor self, Tensor value) -> Tensor
- func: floor(Tensor self) -> Tensor
- func: floor_(Tensor self) -> Tensor
dispatch:
CPU: _floor__cpu
CUDA: _floor__cuda
- func: floor_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _floor_out_cpu
CUDA: _floor_out_cuda
- func: full(IntList size, Scalar fill_value, TensorOptions options={}) -> Tensor
variants: function
- func: full_out(Tensor result, IntList size, Scalar fill_value) -> Tensor
variants: function
- func: full_like(Tensor self, Scalar fill_value) -> Tensor
variants: function
- func: full_like(Tensor self, Scalar fill_value, *, TensorOptions options) -> Tensor
variants: function
- func: full(Type dtype, IntList size, Scalar fill_value) -> Tensor
variants: function
deprecated: true
- func: grid_sampler(Tensor input, Tensor grid, int64_t padding_mode) -> Tensor
variants: function
- func: hann_window(int64_t window_length, TensorOptions options={}) -> Tensor
variants: function
- func: hann_window(int64_t window_length, bool periodic, TensorOptions options={}) -> Tensor
variants: function
- func: hamming_window(int64_t window_length, TensorOptions options={}) -> Tensor
variants: function
- func: hamming_window(int64_t window_length, bool periodic, TensorOptions options={}) -> Tensor
variants: function
- func: hamming_window(int64_t window_length, bool periodic, double alpha, TensorOptions options={}) -> Tensor
variants: function
- func: hamming_window(int64_t window_length, bool periodic, double alpha, double beta, TensorOptions options={}) -> Tensor
variants: function
- func: hinge_embedding_loss(Tensor self, Tensor target, double margin=1.0, int64_t reduction=Reduction::ElementwiseMean) -> Tensor
variants: function
- func: ger(Tensor self, Tensor vec2) -> Tensor
- func: ger_out(Tensor result, Tensor self, Tensor vec2) -> Tensor
variants: function
- func: gesv(Tensor self, Tensor A) -> (Tensor, Tensor)
- func: gesv_out(Tensor solution, Tensor lu, Tensor self, Tensor A) -> (Tensor, Tensor)
variants: function
# gesv handles broadcasting of arbitrary batch dims while _gesv_helper does not.
- func: _gesv_helper(Tensor self, Tensor A) -> (Tensor, Tensor)
dispatch:
CPU: _gesv_helper_cpu
CUDA: _gesv_helper_cuda
- func: group_norm(Tensor input, int64_t num_groups, Tensor? weight={}, Tensor? bias={}, double eps=1e-5, bool cudnn_enabled=True) -> Tensor
variants: function
# FFT
- func: fft(Tensor self, int64_t signal_ndim, bool normalized=false) -> Tensor
- func: ifft(Tensor self, int64_t signal_ndim, bool normalized=false) -> Tensor
- func: rfft(Tensor self, int64_t signal_ndim, bool normalized=false, bool onesided=true) -> Tensor
- func: irfft(Tensor self, int64_t signal_ndim, bool normalized=false, bool onesided=true, IntList signal_sizes={}) -> Tensor
- func: _fft_with_size(Tensor self, int64_t signal_ndim, bool complex_input, bool complex_output, bool inverse, IntList checked_signal_sizes, bool normalized, bool onesided, IntList output_sizes) -> Tensor
dispatch:
CPU: _fft_mkl
CUDA: _fft_cufft
- func: _cufft_get_plan_cache_size() -> int64_t
variants: function
device_guard: false
- func: _cufft_get_plan_cache_max_size() -> int64_t
variants: function
device_guard: false
- func: _cufft_set_plan_cache_max_size(int64_t max_size)
variants: function
device_guard: false
- func: _cufft_clear_plan_cache()
variants: function
device_guard: false
- func: index(Tensor self, TensorList indices) -> Tensor
# NB: This function is special-cased in tools/autograd/gen_variable_type.py
- func: index_copy_(Tensor self, int64_t dim, IndexTensor index, Tensor source) -> Tensor
variants: method
- func: index_put(Tensor self, TensorList indices, Tensor values) -> Tensor
- func: index_put_(Tensor self, TensorList indices, Tensor values) -> Tensor
- func: isclose(Tensor self, Tensor other, double rtol=1e-5, double atol=1e-8, bool equal_nan=False) -> Tensor
- func: is_cuda(Tensor self) -> bool
device_guard: false
- func: is_distributed(Tensor self) -> bool
device_guard: false
- func: is_floating_point(Tensor self) -> bool
device_guard: false
- func: is_nonzero(Tensor self) -> bool
device_guard: false
- func: is_same_size(Tensor self, Tensor other) -> bool
device_guard: false
- func: is_signed(Tensor self) -> bool
device_guard: false
- func: is_sparse(Tensor self) -> bool
device_guard: false
- func: kthvalue(Tensor self, int64_t k, int64_t dim=-1, bool keepdim=false) -> (Tensor, Tensor)
- func: kthvalue_out(Tensor values, Tensor indices, Tensor self, int64_t k, int64_t dim=-1, bool keepdim=false) -> (Tensor, Tensor)
variants: function
- func: layer_norm(Tensor input, IntList normalized_shape, Tensor? weight={}, Tensor? bias={}, double eps=1e-5, bool cudnn_enable=True) -> Tensor
variants: function
- func: linspace(Scalar start, Scalar end, TensorOptions options={}) -> Tensor
variants: function
- func: linspace(Scalar start, Scalar end, int64_t steps, TensorOptions options={}) -> Tensor
variants: function
- func: linspace_out(Tensor result, Scalar start, Scalar end) -> Tensor
variants: function
- func: linspace_out(Tensor result, Scalar start, Scalar end, int64_t steps) -> Tensor
variants: function
- func: linspace(Type dtype, Scalar start, Scalar end, int64_t steps=100) -> Tensor
variants: function
deprecated: true
- func: log(Tensor self) -> Tensor
- func: log_(Tensor self) -> Tensor
dispatch:
CPU: _log__cpu
CUDA: _log__cuda
- func: log_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _log_out_cpu
CUDA: _log_out_cuda
- func: log10(Tensor self) -> Tensor
- func: log10_(Tensor self) -> Tensor
dispatch:
CPU: _log10__cpu
CUDA: _log10__cuda
- func: log10_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _log10_out_cpu
CUDA: _log10_out_cuda
- func: log1p(Tensor self) -> Tensor
- func: log1p_(Tensor self) -> Tensor
dispatch:
CPU: _log1p__cpu
CUDA: _log1p__cuda
SparseCPU: log1p_sparse_
SparseCUDA: log1p_sparse_
- func: log1p_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _log1p_out_cpu
CUDA: _log1p_out_cuda
SparseCPU: log1p_out_sparse
SparseCUDA: log1p_out_sparse
- func: log2(Tensor self) -> Tensor
- func: log2_(Tensor self) -> Tensor
dispatch:
CPU: _log2__cpu
CUDA: _log2__cuda
- func: log2_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _log2_out_cpu
CUDA: _log2_out_cuda
- func: logdet(Tensor self) -> Tensor
- func: logspace(Scalar start, Scalar end, TensorOptions options={}) -> Tensor
variants: function
- func: logspace(Scalar start, Scalar end, int64_t steps, TensorOptions options={}) -> Tensor
variants: function
- func: logspace_out(Tensor result, Scalar start, Scalar end) -> Tensor
variants: function
- func: logspace_out(Tensor result, Scalar start, Scalar end, int64_t steps) -> Tensor
variants: function
- func: logspace(Type dtype, Scalar start, Scalar end, int64_t steps=100) -> Tensor
variants: function
deprecated: true
- func: log_softmax(Tensor self, int64_t dim) -> Tensor
dispatch:
CPU: log_softmax_cpu
CUDA: log_softmax_cuda
- func: log_softmax_backward_data(Tensor grad_output, Tensor output, int64_t dim, Tensor self) -> Tensor
dispatch:
CPU: log_softmax_backward_cpu
CUDA: log_softmax_backward_cuda
- func: logsumexp(Tensor self, int64_t dim, bool keepdim=False) -> Tensor
- func: logsumexp_out(Tensor result, Tensor self, int64_t dim, bool keepdim=False) -> Tensor
variants: function
- func: margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, double margin=0.0, int64_t reduction=Reduction::ElementwiseMean) -> Tensor
variants: function
- func: matmul(Tensor self, Tensor other) -> Tensor
- func: matmul_out(Tensor result, Tensor self, Tensor other) -> Tensor
variants: function
- func: max(Tensor self, int64_t dim, bool keepdim=false) -> (Tensor, Tensor)
- func: max_out(Tensor max, Tensor max_values, Tensor self, int64_t dim, bool keepdim=false) -> (Tensor, Tensor)
variants: function
- func: max_values(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
- func: max_pool1d_with_indices(Tensor self, IntList[1] kernel_size, IntList[1] stride={}, IntList[1] padding=0, IntList[1] dilation=1, bool ceil_mode=false) -> (Tensor, Tensor)
variants: function
- func: max_pool1d(Tensor self, IntList[1] kernel_size, IntList[1] stride={}, IntList[1] padding=0, IntList[1] dilation=1, bool ceil_mode=false) -> Tensor
variants: function
- func: max_pool2d(Tensor self, IntList[1] kernel_size, IntList[1] stride={}, IntList[1] padding=0, IntList[1] dilation=1, bool ceil_mode=false) -> Tensor
variants: function
- func: max_pool3d(Tensor self, IntList[1] kernel_size, IntList[1] stride={}, IntList[1] padding=0, IntList[1] dilation=1, bool ceil_mode=false) -> Tensor
variants: function
# FIXME: These could be combined as optional<ScalarType> but for https://github.com/pytorch/pytorch/issues/6593.
- func: mean(Tensor self, *, ScalarType dtype) -> Tensor
- func: mean(Tensor self) -> Tensor
- func: mean(Tensor self, int64_t dim, bool keepdim, *, ScalarType dtype) -> Tensor
- func: mean(Tensor self, int64_t dim, bool keepdim=False) -> Tensor
- func: mean(Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
- func: mean_out(Tensor result, Tensor self, int64_t dim, bool keepdim, *, ScalarType dtype) -> Tensor
variants: function
- func: mean_out(Tensor result, Tensor self, int64_t dim, bool keepdim=False) -> Tensor
variants: function
- func: mean_out(Tensor result, Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
variants: function
- func: median(Tensor self, int64_t dim, bool keepdim=false) -> (Tensor, Tensor)
- func: median_out(Tensor values, Tensor indices, Tensor self, int64_t dim, bool keepdim=false) -> (Tensor, Tensor)
variants: function
- func: min(Tensor self, int64_t dim, bool keepdim=false) -> (Tensor, Tensor)
- func: min_out(Tensor min, Tensor min_indices, Tensor self, int64_t dim, bool keepdim=false) -> (Tensor, Tensor)
variants: function
- func: min_values(Tensor self, int64_t dim, bool keepdim=false) -> Tensor
- func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, IntList padding, IntList stride, IntList dilation) -> Tensor
variants: function
- func: mkldnn_convolution_backward_input(IntList self_size, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, bool bias_defined) -> Tensor
variants: function
- func: mkldnn_convolution_backward_weights(IntList weight_size, Tensor grad_output, Tensor self, IntList padding, IntList stride, IntList dilation, bool bias_defined) -> (Tensor, Tensor)
variants: function
- func: mkldnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, std::array<bool,3> output_mask) -> (Tensor, Tensor, Tensor)
variants: function
- func: mm(Tensor self, Tensor mat2) -> Tensor
- func: mm_out(Tensor result, Tensor self, Tensor mat2) -> Tensor
variants: function
- func: mode(Tensor self, int64_t dim=-1, bool keepdim=false) -> (Tensor, Tensor)
- func: mode_out(Tensor values, Tensor indices, Tensor self, int64_t dim=-1, bool keepdim=false) -> (Tensor, Tensor)
variants: function
- func: mv(Tensor self, Tensor vec) -> Tensor
- func: mv_out(Tensor result, Tensor self, Tensor vec) -> Tensor
variants: function
- func: narrow(Tensor self, int64_t dim, int64_t start, int64_t length) -> Tensor
- func: ones(IntList size, TensorOptions options={}) -> Tensor
variants: function
- func: ones_out(Tensor result, IntList size) -> Tensor
variants: function
- func: ones_like(Tensor self) -> Tensor
variants: function
- func: ones_like(Tensor self, *, TensorOptions options) -> Tensor
variants: function
- func: ones(Type dtype, IntList size) -> Tensor
variants: function
deprecated: true
- func: pairwise_distance(Tensor x1, Tensor x2, double p=2, double eps=1e-6, bool keepdim=false) -> Tensor
variants: function
- func: permute(Tensor self, IntList dims) -> Tensor
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
- func: pin_memory(Tensor self) -> Tensor
- func: pinverse(Tensor self, double rcond=1e-15) -> Tensor
- func: rand(IntList size, *, TensorOptions options={}) -> Tensor
variants: function
- func: rand(IntList size, *, Generator* generator, TensorOptions options={}) -> Tensor
variants: function
- func: rand_out(Tensor result, IntList size, *) -> Tensor
variants: function
- func: rand_out(Tensor result, IntList size, *, Generator* generator) -> Tensor
variants: function
- func: rand_like(Tensor self) -> Tensor
variants: function
- func: rand_like(Tensor self, *, TensorOptions options) -> Tensor
variants: function
- func: rand(Type dtype, IntList size, *, Generator* generator=nullptr) -> Tensor
variants: function
deprecated: true
- func: randint(int64_t high, IntList size, *, TensorOptions options={}) -> Tensor
variants: function
- func: randint(int64_t high, IntList size, *, Generator* generator, TensorOptions options={}) -> Tensor
variants: function
- func: randint(int64_t low, int64_t high, IntList size, *, TensorOptions options={}) -> Tensor
variants: function
- func: randint(int64_t low, int64_t high, IntList size, *, Generator* generator, TensorOptions options={}) -> Tensor
variants: function
- func: randint(Type dtype, int64_t high, IntList size, *, Generator* generator=nullptr) -> Tensor
variants: function
deprecated: true
- func: randint(Type dtype, int64_t low, int64_t high, IntList size, *, Generator* generator=nullptr) -> Tensor
variants: function
deprecated: true
- func: randint_out(Tensor result, int64_t high, IntList size, *) -> Tensor
variants: function
- func: randint_out(Tensor result, int64_t high, IntList size, *, Generator* generator) -> Tensor
variants: function
- func: randint_out(Tensor result, int64_t low, int64_t high, IntList size, *) -> Tensor
variants: function
- func: randint_out(Tensor result, int64_t low, int64_t high, IntList size, *, Generator* generator) -> Tensor
variants: function
- func: randint_like(Tensor self, int64_t high) -> Tensor
variants: function
- func: randint_like(Tensor self, int64_t low, int64_t high) -> Tensor
variants: function
- func: randint_like(Tensor self, int64_t high, *, TensorOptions options) -> Tensor
variants: function
- func: randint_like(Tensor self, int64_t low, int64_t high, *, TensorOptions options) -> Tensor
variants: function
- func: randn(IntList size, *, TensorOptions options={}) -> Tensor
variants: function
- func: randn(IntList size, *, Generator* generator, TensorOptions options={}) -> Tensor
variants: function
- func: randn_out(Tensor result, IntList size, *) -> Tensor
variants: function
- func: randn_out(Tensor result, IntList size, *, Generator* generator) -> Tensor
variants: function
- func: randn_like(Tensor self) -> Tensor
variants: function
- func: randn_like(Tensor self, *, TensorOptions options) -> Tensor
variants: function
- func: randn(Type dtype, IntList size, *, Generator* generator=nullptr) -> Tensor
variants: function
deprecated: true
- func: randperm(int64_t n, *, TensorOptions options={}) -> Tensor
variants: function
- func: randperm(int64_t n, *, Generator* generator, TensorOptions options={}) -> Tensor
variants: function
- func: randperm_out(Tensor result, int64_t n, *) -> Tensor
variants: function
- func: randperm_out(Tensor result, int64_t n, *, Generator* generator) -> Tensor
variants: function
dispatch:
CPU: randperm_out_cpu
CUDA: randperm_out_cuda
- func: randperm(Type dtype, int64_t n, *, Generator* generator=nullptr) -> Tensor
variants: function
deprecated: true
- func: range(Scalar start, Scalar end, TensorOptions options={}) -> Tensor
variants: function
- func: range(Scalar start, Scalar end, Scalar step, TensorOptions options={}) -> Tensor
variants: function
- func: range_out(Tensor result, Scalar start, Scalar end) -> Tensor
variants: function
- func: range_out(Tensor result, Scalar start, Scalar end, Scalar step) -> Tensor
variants: function
- func: range(Type dtype, Scalar start, Scalar end, Scalar step=1) -> Tensor
variants: function
deprecated: true
- func: repeat(Tensor self, IntList repeats) -> Tensor
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
- func: reshape(Tensor self, IntList shape) -> Tensor
- func: RoiPooling2d_forward(Tensor input, Tensor rois, int64_t pooledHeight, int64_t pooledWidth, double spatialScale) -> (Tensor, Tensor)
variants: function
dispatch:
CPU: RoiPooling2d_forward_cpu
CUDA: RoiPooling2d_forward_cuda
- func: RoiPooling2d_backward(Tensor input, Tensor rois, int64_t pooledHeight, int64_t pooledWidth, double spatialScale, Tensor gradOutput, Tensor argmaxes) -> Tensor
variants: function
dispatch:
CPU: RoiPooling2d_backward_cpu
CUDA: RoiPooling2d_backward_cuda
- func: round(Tensor self) -> Tensor
- func: round_(Tensor self) -> Tensor
dispatch:
CPU: _round__cpu
CUDA: _round__cuda
- func: round_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _round_out_cpu
CUDA: _round_out_cuda
- func: rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=false, Generator* generator=nullptr) -> Tensor
variants: function
- func: rrelu_(Tensor self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=false, Generator* generator=nullptr) -> Tensor
variants: function
- func: relu(Tensor self) -> Tensor
- func: relu_(Tensor self) -> Tensor
- func: hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor
dispatch:
CPU: hardshrink_cpu
CUDA: hardshrink_cuda
- func: hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor
dispatch:
CPU: hardshrink_backward_cpu
CUDA: hardshrink_backward_cuda
- func: rsqrt(Tensor self) -> Tensor
- func: rsqrt_(Tensor self) -> Tensor
dispatch:
CPU: _rsqrt__cpu
CUDA: _rsqrt__cuda
- func: rsqrt_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _rsqrt_out_cpu
CUDA: _rsqrt_out_cuda
- func: select(Tensor self, int64_t dim, int64_t index) -> Tensor
- func: selu(Tensor self) -> Tensor
variants: function
- func: selu_(Tensor self) -> Tensor
variants: function
- func: sigmoid(Tensor self) -> Tensor
- func: sigmoid_(Tensor self) -> Tensor
dispatch:
CPU: _sigmoid__cpu
CUDA: _sigmoid__cuda
- func: sigmoid_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _sigmoid_out_cpu
CUDA: _sigmoid_out_cuda
- func: sin(Tensor self) -> Tensor
- func: sin_(Tensor self) -> Tensor
dispatch:
CPU: _sin__cpu
CUDA: _sin__cuda
- func: sin_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _sin_out_cpu
CUDA: _sin_out_cuda
- func: sinh(Tensor self) -> Tensor
- func: sinh_(Tensor self) -> Tensor
dispatch:
CPU: _sinh__cpu
CUDA: _sinh__cuda
- func: sinh_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _sinh_out_cpu
CUDA: _sinh_out_cuda
- func: size(Tensor self, int64_t dim) -> int64_t
device_guard: false
- func: slice(Tensor self, int64_t dim=0, int64_t start=0, int64_t end=9223372036854775807, int64_t step=1) -> Tensor
- func: slogdet(Tensor self) -> (Tensor, Tensor)
- func: smm(Tensor self, Tensor mat2) -> Tensor
- func: softmax(Tensor self, int64_t dim) -> Tensor
dispatch:
CPU: softmax_cpu
CUDA: softmax_cuda
- func: softmax_backward_data(Tensor grad_output, Tensor output, int64_t dim, Tensor self) -> Tensor
dispatch:
CPU: softmax_backward_cpu
CUDA: softmax_backward_cuda
- func: split(Tensor self, int64_t split_size, int64_t dim=0) -> TensorList
- func: split_with_sizes(Tensor self, IntList split_sizes, int64_t dim=0) -> TensorList
- func: squeeze(Tensor self) -> Tensor
- func: squeeze(Tensor self, int64_t dim) -> Tensor
- func: squeeze_(Tensor self) -> Tensor
variants: method
- func: squeeze_(Tensor self, int64_t dim) -> Tensor
variants: method
- func: sspaddmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
- func: sspaddmm_out(Tensor result, Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: function
dispatch:
CPU: _sspaddmm_out_only_sparse
CUDA: _sspaddmm_out_only_sparse_cuda
SparseCPU: _sspaddmm_out_cpu
SparseCUDA: _sspaddmm_out_cuda
- func: stack(TensorList tensors, int64_t dim=0) -> Tensor
variants: function
- func: stack_out(Tensor result, TensorList tensors, int64_t dim=0) -> Tensor
variants: function
- func: stft(Tensor self, int64_t frame_length, int64_t hop, int64_t fft_size, bool normalized=false, bool onesided=true, Tensor? window={}, int64_t pad_end=0) -> Tensor
python_default_init:
fft_size: frame_length
- func: stride(Tensor self, int64_t dim) -> int64_t
device_guard: false
# FIXME: These could be combined as optional<ScalarType> but for https://github.com/pytorch/pytorch/issues/6593.
- func: sum(Tensor self, *, ScalarType dtype) -> Tensor
- func: sum(Tensor self) -> Tensor
- func: _sum(Tensor self) -> Tensor
dispatch:
CPU: _sum_cpu
CUDA: _sum_cuda
- func: sum(Tensor self, IntList[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor
- func: sum(Tensor self, IntList[1] dim, bool keepdim=False) -> Tensor
- func: sum(Tensor self, IntList[1] dim, *, ScalarType dtype) -> Tensor
- func: _sum(Tensor self, IntList[1] dim, bool keepdim=False) -> Tensor
- func: sum_out(Tensor result, Tensor self, IntList[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor
variants: function
- func: sum_out(Tensor result, Tensor self, IntList[1] dim, bool keepdim=False) -> Tensor
variants: function
- func: sum_out(Tensor result, Tensor self, IntList[1] dim, *, ScalarType dtype) -> Tensor
variants: function
- func: _sum_out(Tensor result, Tensor self, IntList[1] dim, bool keepdim=False) -> Tensor
variants: function
- func: _sum_cuda_out(Tensor result, Tensor self, int64_t dim, bool keepdim=False) -> Tensor
variants: function
dispatch:
CUDA: _sum_out_cuda
- func: sqrt(Tensor self) -> Tensor
- func: sqrt_(Tensor self) -> Tensor
dispatch:
CPU: _sqrt__cpu
CUDA: _sqrt__cuda
- func: sqrt_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _sqrt_out_cpu
CUDA: _sqrt_out_cuda
- func: std(Tensor self, bool unbiased=true) -> Tensor
- func: std(Tensor self, int64_t dim, bool unbiased=true, bool keepdim=false) -> Tensor
- func: std_out(Tensor result, Tensor self, int64_t dim, bool unbiased=true, bool keepdim=false) -> Tensor
variants: function
# FIXME: These could be combined as optional<ScalarType> but for https://github.com/pytorch/pytorch/issues/6593.
- func: prod(Tensor self, *, ScalarType dtype) -> Tensor
- func: prod(Tensor self) -> Tensor
- func: _prod(Tensor self) -> Tensor
dispatch:
CPU: _prod_cpu
CUDA: _prod_cuda
- func: prod(Tensor self, int64_t dim, bool keepdim, *, ScalarType dtype) -> Tensor
- func: prod(Tensor self, int64_t dim, bool keepdim=False) -> Tensor
- func: prod(Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
- func: _prod(Tensor self, int64_t dim, bool keepdim=False) -> Tensor
- func: prod_out(Tensor result, Tensor self, int64_t dim, bool keepdim, *, ScalarType dtype) -> Tensor
variants: function
- func: prod_out(Tensor result, Tensor self, int64_t dim, bool keepdim=False) -> Tensor
variants: function
- func: prod_out(Tensor result, Tensor self, int64_t dim, *, ScalarType dtype) -> Tensor
variants: function
- func: _prod_out(Tensor result, Tensor self, int64_t dim, bool keepdim=False) -> Tensor
variants: function
dispatch:
CPU: _prod_out_cpu
CUDA: _prod_out_cuda
- func: t(Tensor self) -> Tensor
- func: t_(Tensor self) -> Tensor
variants: method
- func: tan(Tensor self) -> Tensor
- func: tan_(Tensor self) -> Tensor
dispatch:
CPU: _tan__cpu
CUDA: _tan__cuda
- func: tan_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _tan_out_cpu
CUDA: _tan_out_cuda
- func: tanh(Tensor self) -> Tensor
- func: tanh_(Tensor self) -> Tensor
dispatch:
CPU: _tanh__cpu
CUDA: _tanh__cuda
- func: tanh_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _tanh_out_cpu
CUDA: _tanh_out_cuda
- func: transpose(Tensor self, int64_t dim0, int64_t dim1) -> Tensor
- func: transpose_(Tensor self, int64_t dim0, int64_t dim1) -> Tensor
variants: method
- func: flip(Tensor self, IntList dims) -> Tensor
dispatch:
CPU: flip_cpu
CUDA: flip_cuda
- func: _trilinear(Tensor i1, Tensor i2, Tensor i3, IntList expand1, IntList expand2, IntList expand3, IntList sumdim, int64_t unroll_dim=1) -> Tensor
variants: function
- func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, double margin=1.0, double p=2, double eps=1e-6, bool swap=false, int64_t reduction=Reduction::ElementwiseMean) -> Tensor
variants: function
- func: trunc(Tensor self) -> Tensor
- func: trunc_(Tensor self) -> Tensor
dispatch:
CPU: _trunc__cpu
CUDA: _trunc__cuda
- func: trunc_out(Tensor result, Tensor self) -> Tensor
variants: function
dispatch:
CPU: _trunc_out_cpu
CUDA: _trunc_out_cuda
- func: type_as(Tensor self, Tensor other) -> Tensor
variants: method
- func: _unique(Tensor self, bool sorted=false, bool return_inverse=false) -> (Tensor, Tensor)
dispatch:
CPU: _unique_cpu
CUDA: _unique_cuda
- func: _unsafe_view(Tensor self, IntList size) -> Tensor
variants: function
- func: unsqueeze(Tensor self, int64_t dim) -> Tensor
- func: unsqueeze_(Tensor self, int64_t dim) -> Tensor
variants: method
- func: var(Tensor self, bool unbiased=true) -> Tensor
- func: var(Tensor self, int64_t dim, bool unbiased=true, bool keepdim=false) -> Tensor
- func: var_out(Tensor result, Tensor self, int64_t dim, bool unbiased=true, bool keepdim=false) -> Tensor
variants: function
- func: view_as(Tensor self, Tensor other) -> Tensor
variants: method
# we define both of these because 'where' does the broadcast and '_s_where' doesn't;
# this allows us to implicitly calculate the broadcast derivative, while only dealing with the
# _s_where derivative.
- func: where(BoolTensor condition, Tensor self, Tensor other) -> Tensor
- func: _s_where(BoolTensor condition, Tensor self, Tensor other) -> Tensor
dispatch:
CPU: _s_where_cpu
CUDA: _s_where_cuda
- func: zeros(IntList size, TensorOptions options={}) -> Tensor
variants: function
- func: zeros_out(Tensor result, IntList size) -> Tensor
variants: function
- func: zeros_like(Tensor self) -> Tensor
variants: function
- func: zeros_like(Tensor self, *, TensorOptions options) -> Tensor
variants: function
- func: zeros(Type dtype, IntList size) -> Tensor
variants: function
deprecated: true
- func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor
dispatch:
CPU: _standard_gamma_grad_cpu
CUDA: _standard_gamma_grad_cuda
- func: _standard_gamma(Tensor self, Generator* generator=nullptr) -> Tensor
dispatch:
CPU: _s_gamma_cpu
CUDA: _s_gamma_cuda
- func: poisson(Tensor self, Generator* generator=nullptr) -> Tensor
variants: function
dispatch:
CPU: _s_poisson_cpu
CUDA: _s_poisson_cuda
# When more variants get ported to native, this dispatch will get more
# complicated
- func: native_norm(Tensor self, Scalar p=2) -> Tensor
variants: function
dispatch:
SparseCPU: norm_sparse
SparseCUDA: norm_sparse
- func: norm(Tensor self, Scalar p=2) -> Tensor
variants: method, function
- func: norm(Tensor self, Scalar p, int64_t dim, bool keepdim=false) -> Tensor
python_default_init:
p: 2
- func: norm_out(Tensor result, Tensor self, Scalar p, int64_t dim, bool keepdim=false) -> Tensor
variants: function
python_default_init:
p: 2
- func: native_clone(Tensor self) -> Tensor
variants: function
dispatch:
SparseCPU: clone_sparse
SparseCUDA: clone_sparse
- func: clone(Tensor self) -> Tensor
- func: native_resize_as_(Tensor self, Tensor the_template) -> Tensor
variants: function
dispatch:
SparseCPU: resize_as_sparse_
SparseCUDA: resize_as_sparse_
- func: resize_as_(Tensor self, Tensor the_template) -> Tensor
- func: native_pow_out(Tensor result, Tensor self, Scalar exponent) -> Tensor
variants: function
dispatch:
SparseCPU: pow_out_sparse_scalar
SparseCUDA: pow_out_sparse_scalar
- func: native_pow(Tensor self, Scalar exponent) -> Tensor
variants: function
dispatch:
SparseCPU: pow_sparse_scalar
SparseCUDA: pow_sparse_scalar
- func: pow_out(Tensor result, Tensor self, Scalar exponent) -> Tensor
variants: function
- func: pow(Tensor self, Scalar exponent) -> Tensor
variants: method, function
- func: native_zero_(Tensor self) -> Tensor
variants: function
dispatch:
SparseCPU: zero_sparse_
SparseCUDA: zero_sparse_
- func: zero_(Tensor self) -> Tensor
- func: s_native_add_out(Tensor result, Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
SparseCPU: s_add_out_sparse_cpu
SparseCUDA: s_add_out_sparse_cuda
- func: native_add_out(Tensor result, Tensor self, SparseTensorRef other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
CPU: add_out_dense_sparse_cpu
CUDA: add_out_dense_sparse_cuda
- func: s_native_add(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
SparseCPU: s_add_sparse_cpu
SparseCUDA: s_add_sparse_cuda
- func: native_add(Tensor self, SparseTensorRef other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
CPU: add_dense_sparse_cpu
CUDA: add_dense_sparse_cuda
- func: s_native_add_(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
SparseCPU: s_add_sparse_cpu_
SparseCUDA: s_add_sparse_cuda_
- func: native_add_(Tensor self, SparseTensorRef other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
CPU: add_dense_sparse_cpu_
CUDA: add_dense_sparse_cuda_
- func: add_out(Tensor result, Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
- func: add(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: method, function
- func: add_(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: method
- func: s_native_sub_out(Tensor result, Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
SparseCPU: s_sub_out_sparse_cpu
SparseCUDA: s_sub_out_sparse_cuda
- func: s_native_sub(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
SparseCPU: s_sub_sparse_cpu
SparseCUDA: s_sub_sparse_cuda
- func: s_native_sub_(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
dispatch:
SparseCPU: s_sub_sparse_cpu_
SparseCUDA: s_sub_sparse_cuda_
- func: sub_out(Tensor result, Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: function
- func: sub(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: method, function
- func: sub_(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
variants: method
- func: s_native_mul_out(Tensor result, Tensor self, Tensor other) -> Tensor
variants: function
dispatch:
SparseCPU: s_mul_out_sparse_cpu
SparseCUDA: s_mul_out_sparse_cuda
- func: s_native_mul(Tensor self, Tensor other) -> Tensor
variants: function
dispatch:
SparseCPU: s_mul_sparse_cpu
SparseCUDA: s_mul_sparse_cuda
- func: s_native_mul_(Tensor self, Tensor other) -> Tensor
variants: function
dispatch:
SparseCPU: s_mul_sparse_cpu_
SparseCUDA: s_mul_sparse_cuda_
- func: native_mul_out(Tensor result, Tensor self, Scalar other) -> Tensor
variants: function
dispatch:
SparseCPU: mul_out_sparse_scalar
SparseCUDA: mul_out_sparse_scalar
- func: native_mul(Tensor self, Scalar other) -> Tensor
variants: function
dispatch:
SparseCPU: mul_sparse_scalar
SparseCUDA: mul_sparse_scalar
- func: native_mul_(Tensor self, Scalar other) -> Tensor
variants: function
dispatch:
SparseCPU: mul_sparse_scalar_
SparseCUDA: mul_sparse_scalar_
- func: mul_out(Tensor result, Tensor self, Tensor other) -> Tensor
variants: function
- func: mul_out(Tensor result, Tensor self, Scalar other) -> Tensor
variants: function
- func: mul(Tensor self, Tensor other) -> Tensor
variants: method, function
- func: mul(Tensor self, Scalar other) -> Tensor
variants: method, function
- func: mul_(Tensor self, Tensor other) -> Tensor
variants: method
- func: mul_(Tensor self, Scalar other) -> Tensor
variants: method
- func: native_div_out(Tensor result, Tensor self, Scalar other) -> Tensor
variants: function
dispatch:
SparseCPU: div_out_sparse_scalar
SparseCUDA: div_out_sparse_scalar
- func: native_div(Tensor self, Scalar other) -> Tensor
variants: function
dispatch:
SparseCPU: div_sparse_scalar
SparseCUDA: div_sparse_scalar
- func: native_div_(Tensor self, Scalar other) -> Tensor
variants: function
dispatch:
SparseCPU: div_sparse_scalar_
SparseCUDA: div_sparse_scalar_
- func: div_out(Tensor result, Tensor self, Scalar other) -> Tensor
variants: function
- func: div(Tensor self, Scalar other) -> Tensor
variants: method, function
- func: div_(Tensor self, Scalar other) -> Tensor
variants: method
- func: s_native_addmm_out(Tensor result, Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: function
dispatch:
CPU: s_addmm_out_sparse_dense_cpu
CUDA: s_addmm_out_sparse_dense_cuda
- func: s_native_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: function
dispatch:
CPU: s_addmm_sparse_dense_cpu
CUDA: s_addmm_sparse_dense_cuda
- func: s_native_addmm_(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: function
dispatch:
CPU: s_addmm_sparse_dense_cpu_
CUDA: s_addmm_sparse_dense_cuda_
- func: addmm_out(Tensor result, Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: function
- func: addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: method, function
- func: addmm_(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
variants: method
- func: native_tensor(Type self_ty) -> Tensor
variants: function
dispatch:
SparseCPU: new_sparse
SparseCUDA: new_sparse
- func: native_tensor(Type self_ty, IntList size) -> Tensor
variants: function
dispatch:
SparseCPU: new_with_size_sparse
SparseCUDA: new_with_size_sparse
- func: tensor(Type dtype) -> Tensor
variants: []
- func: tensor(Type dtype, IntList size) -> Tensor
variants: []
# NB: I have to decompose sparse_coo_tensor into two functions, because
# it has custom dispatch logic for which Type to dispatch on (we must
# use the sparse equivalent of the type of the SECOND argument).
#
# The actual dispatcher, native_sparse_coo_tensor, has all of its overloads
# removed so you don't accidentally trigger the default behavior, which
# is to infer Type based on the first argument (indices), which is ~never
# what you want. (I guess hypothetically it would work; you'd
# just only ever dispatch to CPULongTensor or CUDALongTensor, but that
# seems a bit too finely balanced.)
- func: native_sparse_coo_tensor(IndexTensor indices, Tensor values) -> Tensor
variants: []
dispatch:
SparseCPU: new_with_tensor_sparse
SparseCUDA: new_with_tensor_sparse
- func: native_sparse_coo_tensor(IndexTensor indices, Tensor values, IntList size) -> Tensor
variants: []
dispatch:
SparseCPU: new_with_tensor_and_size_sparse
SparseCUDA: new_with_tensor_and_size_sparse
- func: sparse_coo_tensor(IndexTensor indices, Tensor values) -> Tensor
variants: []
- func: sparse_coo_tensor(IndexTensor indices, Tensor values, IntList size) -> Tensor
variants: []
- func: _native_sparse_coo_tensor_unsafe(IndexTensor indices, Tensor values, IntList size) -> Tensor
variants: []
dispatch:
SparseCPU: new_with_tensor_and_size_unsafe_sparse
SparseCUDA: new_with_tensor_and_size_unsafe_sparse
- func: _sparse_coo_tensor_unsafe(IndexTensor indices, Tensor values, IntList size) -> Tensor
variants: function
- func: sparse_raw_resize_(Tensor self, IntList size, int64_t sparseDims, int64_t denseDims) -> Tensor
variants: method
dispatch:
SparseCPU: raw_resize_sparse_
SparseCUDA: raw_resize_sparse_
- func: _sparse_mask(Tensor self, SparseTensorRef mask) -> Tensor
variants: method
dispatch:
CPU: sparse_mask_cpu
CUDA: sparse_mask_cuda
- func: to_dense(Tensor self) -> Tensor
variants: method
dispatch:
SparseCPU: sparse_to_dense
SparseCUDA: sparse_to_dense
- func: _sparseDims(Tensor self) -> int64_t
variants: method
dispatch:
SparseCPU: _sparseDims_sparse
SparseCUDA: _sparseDims_sparse
device_guard: False
# legacy method
- func: _dimI(Tensor self) -> int64_t
variants: method
dispatch: _sparseDims_sparse
device_guard: False
- func: _denseDims(Tensor self) -> int64_t
variants: method
dispatch:
SparseCPU: _denseDims_sparse
SparseCUDA: _denseDims_sparse
device_guard: False
# legacy method
- func: _dimV(Tensor self) -> int64_t
variants: method
dispatch: _denseDims_sparse
device_guard: False
- func: _nnz(Tensor self) -> int64_t
variants: method
dispatch:
SparseCPU: _nnz_sparse
SparseCUDA: _nnz_sparse
device_guard: False
- func: coalesce(Tensor self) -> Tensor
variants: method
dispatch:
SparseCPU: coalesce_sparse_cpu
SparseCUDA: coalesce_sparse_cuda
- func: is_coalesced(Tensor self) -> bool
variants: method
dispatch:
SparseCPU: is_coalesced_sparse
SparseCUDA: is_coalesced_sparse
device_guard: False
- func: _indices(Tensor self) -> Tensor
variants: method
dispatch:
SparseCPU: _indices_sparse
SparseCUDA: _indices_sparse
device_guard: False
- func: _values(Tensor self) -> Tensor
variants: method
dispatch:
SparseCPU: _values_sparse
SparseCUDA: _values_sparse
device_guard: False
- func: hspmm_out(Tensor result, Tensor mat1, Tensor mat2) -> Tensor
variants: function
dispatch:
SparseCPU: hspmm_out_sparse_cpu
SparseCUDA: hspmm_out_sparse_cuda
- func: hspmm(Tensor mat1, Tensor mat2) -> Tensor
variants: function
dispatch:
SparseCPU: hspmm_sparse_cpu
SparseCUDA: hspmm_sparse_cuda
# This "raw copy" doesn't handle conversions NOR does it handle non-blocking.
- func: raw_copy_sparse_(Tensor self, Tensor src) -> Tensor
variants: function
dispatch:
SparseCPU: copy_sparse_
SparseCUDA: copy_sparse_
- func: numel(Tensor self) -> int64_t
variants:
- method
- function
device_guard: False
- func: unbind(Tensor self, int64_t dim=0) -> TensorList
variants:
- method
- function
- func: native_get_device(Tensor self) -> int64_t
variants: function
dispatch:
SparseCUDA: get_device_sparse_cuda
device_guard: False
- func: get_device(Tensor self) -> int64_t
device_guard: False
- func: meshgrid(TensorList tensors) -> TensorList
variants: function