| #ifndef TH_GENERIC_FILE |
| #define TH_GENERIC_FILE "generic/SpatialFullDilatedConvolution.c" |
| #else |
| |
| static void THNN_(im2col)(const real* data_im, const int channels, |
| const int height, const int width, const int kernel_h, const int kernel_w, |
| const int pad_h, const int pad_w, |
| const int stride_h, const int stride_w, |
| const int dilation_h, const int dilation_w, |
| real* data_col) { |
| const int height_col = (height + 2 * pad_h - |
| (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; |
| const int width_col = (width + 2 * pad_w - |
| (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; |
| const int channels_col = channels * kernel_h * kernel_w; |
| for (int c_col = 0; c_col < channels_col; ++c_col) { |
| int w_offset = c_col % kernel_w; |
| int h_offset = (c_col / kernel_w) % kernel_h; |
| int c_im = c_col / kernel_h / kernel_w; |
| for (int h_col = 0; h_col < height_col; ++h_col) { |
| for (int w_col = 0; w_col < width_col; ++w_col) { |
| int h_im = h_col * stride_h - pad_h + h_offset * dilation_h; |
| int w_im = w_col * stride_w - pad_w + w_offset * dilation_w; |
| data_col[(c_col * height_col + h_col) * width_col + w_col] = |
| (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) ? |
| data_im[(c_im * height + h_im) * width + w_im] : 0; |
| } |
| } |
| } |
| } |
| |
| static void THNN_(col2im)(const real* data_col, const int channels, |
| const int height, const int width, |
| const int output_height, const int output_width, |
| const int kernel_h, const int kernel_w, |
| const int pad_h, const int pad_w, |
| const int stride_h, const int stride_w, |
| const int dilation_h, const int dilation_w, |
| real* data_im) { |
| memset(data_im, 0, sizeof(real) * height * width * channels); |
| const int height_col = output_height; |
| const int width_col = output_width; |
| const int channels_col = channels * kernel_h * kernel_w; |
| for (int c_col = 0; c_col < channels_col; ++c_col) { |
| int w_offset = c_col % kernel_w; |
| int h_offset = (c_col / kernel_w) % kernel_h; |
| int c_im = c_col / kernel_h / kernel_w; |
| for (int h_col = 0; h_col < height_col; ++h_col) { |
| for (int w_col = 0; w_col < width_col; ++w_col) { |
| int h_im = h_col * stride_h - pad_h + h_offset * dilation_h; |
| int w_im = w_col * stride_w - pad_w + w_offset * dilation_w; |
| if (h_im >= 0 && h_im < height && w_im >= 0 && w_im < width) |
| data_im[(c_im * height + h_im) * width + w_im] += |
| data_col[(c_col * height_col + h_col) * width_col + w_col]; |
| } |
| } |
| } |
| } |
| |
| static inline void THNN_(SpatialFullDilatedConvolution_shapeCheck)( |
| THTensor *input, THTensor *gradOutput, |
| THTensor *weight, THTensor *bias, |
| int kH, int kW, int dH, int dW, int padH, int padW, |
| int dilationH, int dilationW, int adjH, int adjW) { |
| |
| THArgCheck(kW > 0 && kH > 0, 9, |
| "kernel size should be greater than zero, but got kH: %d kW: %d", kH, kW); |
| THArgCheck(dW > 0 && dH > 0, 11, |
| "stride should be greater than zero, but got dH: %d dW: %d", dH, dW); |
| THArgCheck(dilationW > 0 && dilationH > 0, 15, |
| "dilation should be greater than zero, but got dilationH: %d, dilationW: %d", |
| dilationH, dilationW); |
| THArgCheck((adjW < dW || adjW < dilationW) && (adjH < dH || adjH < dilationH), 15, |
| "output padding must be smaller than either stride or dilation, but got adjH: %d adjW: %d dH: %d dW: %d dilationH: %d dilationW: %d", |
| adjH, adjW, dH, dW, dilationH, dilationW); |
| THNN_ARGCHECK(weight->nDimension == 2 || weight->nDimension == 4, 5, weight, |
| "2D or 4D weight tensor expected, but got: %s"); |
| |
| if (bias != NULL) { |
| THNN_CHECK_DIM_SIZE(bias, 1, 0, weight->size[1]); |
| } |
| |
| int ndim = input->nDimension; |
| int dimf = 0; |
| int dimh = 1; |
| int dimw = 2; |
| |
| if (ndim == 4) { |
| dimf++; |
| dimh++; |
| dimw++; |
| } |
| |
| THNN_ARGCHECK(ndim == 3 || ndim == 4, 2, input, |
| "3D or 4D input tensor expected but got: %s"); |
| |
| int64_t nInputPlane = weight->size[0]; |
| int64_t inputHeight = input->size[dimh]; |
| int64_t inputWidth = input->size[dimw]; |
| int64_t nOutputPlane = weight->size[1]; |
| int64_t outputHeight = (inputHeight - 1) * dH - 2*padH + (dilationH * (kH - 1) + 1) + adjH; |
| int64_t outputWidth = (inputWidth - 1) * dW - 2*padW + (dilationW * (kW - 1) + 1) + adjW; |
| |
| if (outputWidth < 1 || outputHeight < 1) |
| THError("Given input size: (%d x %d x %d). " |
| "Calculated output size: (%d x %d x %d). Output size is too small", |
| nInputPlane,inputHeight,inputWidth,nOutputPlane,outputHeight,outputWidth); |
| |
| THNN_CHECK_DIM_SIZE(input, ndim, dimf, nInputPlane); |
| |
| if (gradOutput != NULL) { |
| THNN_CHECK_DIM_SIZE(gradOutput, ndim, dimf, nOutputPlane); |
| THNN_CHECK_DIM_SIZE(gradOutput, ndim, dimh, outputHeight); |
| THNN_CHECK_DIM_SIZE(gradOutput, ndim, dimw, outputWidth); |
| } |
| } |
| |
| void THNN_(SpatialFullDilatedConvolution_updateOutput)( |
| THNNState *state, |
| THTensor *input, |
| THTensor *output, |
| THTensor *weight, |
| THTensor *bias, |
| THTensor *columns, |
| THTensor *ones, |
| int kW, int kH, |
| int dW, int dH, |
| int padW, int padH, |
| int dilationW, int dilationH, |
| int adjW, int adjH) |
| { |
| THNN_(SpatialFullDilatedConvolution_shapeCheck) |
| (input, NULL, weight, bias, kH, kW, dH, dW, padH, padW, |
| dilationH, dilationW, adjH, adjW); |
| |
| int nInputPlane = THTensor_(size)(weight,0); |
| int nOutputPlane = THTensor_(size)(weight,1); |
| |
| input = THTensor_(newContiguous)(input); |
| weight = THTensor_(newContiguous)(weight); |
| bias = bias ? THTensor_(newContiguous)(bias) : bias; |
| int batch = 1; |
| if (input->nDimension == 3) { |
| // Force batch |
| batch = 0; |
| THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]); |
| } |
| |
| int64_t inputHeight = input->size[2]; |
| int64_t inputWidth = input->size[3]; |
| int64_t outputHeight = (inputHeight - 1) * dH - 2*padH + (dilationH * (kH - 1) + 1) + adjH; |
| int64_t outputWidth = (inputWidth - 1) * dW - 2*padW + (dilationW * (kW - 1) + 1) + adjW; |
| |
| // Batch size + input planes |
| int64_t batchSize = input->size[0]; |
| |
| // Resize output |
| THTensor_(resize4d)(output, batchSize, nOutputPlane, outputHeight, outputWidth); |
| |
| // Resize temporary columns |
| THTensor_(resize2d)(columns, nOutputPlane*kW*kH, inputHeight*inputWidth); |
| THTensor_(zero)(columns); |
| |
| // Define a buffer of ones, for bias accumulation |
| // Note: this buffer can be shared with other modules, it only ever gets increased, |
| // and always contains ones. |
| if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) { |
| // Resize plane and fill with ones... |
| THTensor_(resize2d)(ones, outputHeight, outputWidth); |
| THTensor_(fill)(ones, 1); |
| } |
| |
| // Helpers |
| THTensor *input_n = THTensor_(new)(); |
| THTensor *output_n = THTensor_(new)(); |
| |
| int elt; |
| // For each elt in batch, do: |
| for (elt = 0; elt < batchSize; elt ++) { |
| // Matrix mulitply per output: |
| THTensor_(select)(input_n, input, 0, elt); |
| THTensor_(select)(output_n, output, 0, elt); |
| |
| // M,N,K are dims of matrix A and B |
| // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm) |
| int64_t m = weight->size[1] * weight->size[2] * weight->size[3]; |
| int64_t n = columns->size[1]; |
| int64_t k = weight->size[0]; |
| |
| // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices) |
| THBlas_(gemm)( |
| 'n', 't', |
| n, m, k, |
| 1, |
| THTensor_(data)(input_n), n, |
| THTensor_(data)(weight), m, |
| 0, |
| THTensor_(data)(columns), n |
| ); |
| |
| // Unpack columns back into input: |
| THNN_(col2im)( |
| THTensor_(data)(columns), |
| nOutputPlane, outputHeight, outputWidth, inputHeight, inputWidth, kH, kW, padH, padW, dH, dW, |
| dilationH, dilationW, |
| THTensor_(data)(output_n) |
| ); |
| |
| // Do Bias after: |
| // M,N,K are dims of matrix A and B |
| // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm) |
| int64_t m_ = nOutputPlane; |
| int64_t n_ = outputHeight * outputWidth; |
| int64_t k_ = 1; |
| |
| // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices) |
| if (bias) { |
| THBlas_(gemm)( |
| 't', 'n', |
| n_, m_, k_, |
| 1, |
| THTensor_(data)(ones), k_, |
| THTensor_(data)(bias), k_, |
| 1, |
| THTensor_(data)(output_n), n_ |
| ); |
| } |
| } |
| |
| // Free |
| THTensor_(free)(input_n); |
| THTensor_(free)(output_n); |
| |
| // Resize output |
| if (batch == 0) { |
| THTensor_(resize3d)(output, nOutputPlane, outputHeight, outputWidth); |
| THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth); |
| } |
| |
| THTensor_(free)(input); |
| THTensor_(free)(weight); |
| if (bias) THTensor_(free)(bias); |
| } |
| |
| void THNN_(SpatialFullDilatedConvolution_updateGradInput)( |
| THNNState *state, |
| THTensor *input, |
| THTensor *gradOutput, |
| THTensor *gradInput, |
| THTensor *weight, |
| THTensor *gradColumns, |
| int kW, int kH, |
| int dW, int dH, |
| int padW, int padH, |
| int dilationW, int dilationH, |
| int adjW, int adjH) |
| { |
| THNN_(SpatialFullDilatedConvolution_shapeCheck) |
| (input, gradOutput, weight, NULL, kH, kW, dH, dW, padH, padW, |
| dilationH, dilationW, adjH, adjW); |
| |
| int nInputPlane = THTensor_(size)(weight,0); |
| int nOutputPlane = THTensor_(size)(weight,1); |
| |
| input = THTensor_(newContiguous)(input); |
| gradOutput = THTensor_(newContiguous)(gradOutput); |
| weight = THTensor_(newContiguous)(weight); |
| int batch = 1; |
| if (input->nDimension == 3) { |
| // Force batch |
| batch = 0; |
| THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]); |
| THTensor_(resize4d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]); |
| } |
| |
| int64_t inputWidth = input->size[3]; |
| int64_t inputHeight = input->size[2]; |
| int64_t outputHeight = (inputHeight - 1) * dH - 2*padH + (dilationH * (kH - 1) + 1) + adjH; |
| int64_t outputWidth = (inputWidth - 1) * dW - 2*padW + (dilationW * (kW - 1) + 1) + adjW; |
| |
| // Batch size + input planes |
| int64_t batchSize = input->size[0]; |
| |
| // Resize output |
| THTensor_(resize4d)(gradInput, batchSize, nInputPlane, inputHeight, inputWidth); |
| THTensor_(zero)(gradInput); |
| |
| // Resize temporary columns |
| THTensor_(resize2d)(gradColumns, nOutputPlane*kW*kH, inputHeight*inputWidth); |
| |
| // Helpers |
| THTensor *gradInput_n = THTensor_(new)(); |
| THTensor *gradOutput_n = THTensor_(new)(); |
| |
| int elt; |
| // For each elt in batch, do: |
| for (elt = 0; elt < batchSize; elt ++) { |
| // Matrix mulitply per sample: |
| THTensor_(select)(gradInput_n, gradInput, 0, elt); |
| THTensor_(select)(gradOutput_n, gradOutput, 0, elt); |
| |
| // Extract columns: |
| THNN_(im2col)( |
| THTensor_(data)(gradOutput_n), |
| nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, |
| dilationH, dilationW, |
| THTensor_(data)(gradColumns) |
| ); |
| |
| |
| // M,N,K are dims of matrix A and B |
| // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm) |
| int64_t m = weight->size[0]; |
| int64_t n = gradColumns->size[1]; |
| int64_t k = weight->size[1] * weight->size[2] * weight->size[3]; |
| |
| // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices) |
| THBlas_(gemm)( |
| 'n', 'n', |
| n, m, k, |
| 1, |
| THTensor_(data)(gradColumns), n, |
| THTensor_(data)(weight), k, |
| 0, |
| THTensor_(data)(gradInput_n), n |
| ); |
| } |
| |
| |
| // Free |
| THTensor_(free)(gradInput_n); |
| THTensor_(free)(gradOutput_n); |
| |
| // Resize output |
| if (batch == 0) { |
| THTensor_(resize3d)(gradOutput, nOutputPlane, outputHeight, outputWidth); |
| THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth); |
| THTensor_(resize3d)(gradInput, nInputPlane, inputHeight, inputWidth); |
| } |
| |
| THTensor_(free)(input); |
| THTensor_(free)(gradOutput); |
| THTensor_(free)(weight); |
| } |
| |
| |
| void THNN_(SpatialFullDilatedConvolution_accGradParameters)( |
| THNNState *state, |
| THTensor *input, |
| THTensor *gradOutput, |
| THTensor *gradWeight, |
| THTensor *gradBias, |
| THTensor *columns, |
| THTensor *ones, |
| int kW, int kH, |
| int dW, int dH, |
| int padW, int padH, |
| int dilationW, int dilationH, |
| int adjW, int adjH, |
| accreal scale_) |
| { |
| real scale = TH_CONVERT_ACCREAL_TO_REAL(scale_); |
| THNN_(SpatialFullDilatedConvolution_shapeCheck) |
| (input, gradOutput, gradWeight, gradBias, kH, kW, dH, dW, padH, padW, |
| dilationH, dilationW, adjH, adjW); |
| |
| int nInputPlane = THTensor_(size)(gradWeight,0); |
| int nOutputPlane = THTensor_(size)(gradWeight,1); |
| |
| input = THTensor_(newContiguous)(input); |
| gradOutput = THTensor_(newContiguous)(gradOutput); |
| THArgCheck(THTensor_(isContiguous)(gradWeight), 4, "gradWeight needs to be contiguous"); |
| if (gradBias) |
| THArgCheck(THTensor_(isContiguous)(gradBias), 5, "gradBias needs to be contiguous"); |
| int batch = 1; |
| if (input->nDimension == 3) { |
| // Force batch |
| batch = 0; |
| THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]); |
| THTensor_(resize4d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]); |
| } |
| |
| int64_t inputWidth = input->size[3]; |
| int64_t inputHeight = input->size[2]; |
| int64_t outputHeight = (inputHeight - 1) * dH - 2*padH + (dilationH * (kH - 1) + 1) + adjH; |
| int64_t outputWidth = (inputWidth - 1) * dW - 2*padW + (dilationW * (kW - 1) + 1) + adjW; |
| |
| // Batch size + input planes |
| int64_t batchSize = input->size[0]; |
| |
| // Define a buffer of ones, for bias accumulation |
| if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) { |
| // Resize plane and fill with ones... |
| THTensor_(resize2d)(ones, outputHeight, outputWidth); |
| THTensor_(fill)(ones, 1); |
| } |
| |
| // Resize temporary columns |
| THTensor_(resize2d)(columns, nOutputPlane*kW*kH, inputHeight*inputWidth); |
| |
| // Helpers |
| THTensor *input_n = THTensor_(new)(); |
| THTensor *gradOutput_n = THTensor_(new)(); |
| |
| int elt; |
| // For each elt in batch, do: |
| for (elt = 0; elt < batchSize; elt ++) { |
| // Matrix mulitply per output: |
| THTensor_(select)(input_n, input, 0, elt); |
| THTensor_(select)(gradOutput_n, gradOutput, 0, elt); |
| |
| // Extract columns: |
| THNN_(im2col)( |
| THTensor_(data)(gradOutput_n), |
| nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW, |
| dilationH, dilationW, |
| THTensor_(data)(columns) |
| ); |
| |
| // M,N,K are dims of matrix A and B |
| // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm) |
| int64_t n = columns->size[0]; // nOutputPlane * kh * kw |
| int64_t m = input_n->size[0]; // nInputPlane |
| int64_t k = columns->size[1]; // inputHeight * inputWidth |
| |
| // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices) |
| THBlas_(gemm)( |
| 't', 'n', |
| n, m, k, |
| scale, |
| THTensor_(data)(columns), k, |
| THTensor_(data)(input_n), k, |
| 1, |
| THTensor_(data)(gradWeight), n |
| ); |
| |
| |
| // Do Bias: |
| // M,N,K are dims of matrix A and B |
| // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm) |
| int64_t m_ = nOutputPlane; |
| int64_t k_ = outputHeight * outputWidth; |
| |
| // Do GEMV (note: this is a bit confusing because gemv assumes column-major matrices) |
| if (gradBias) { |
| THBlas_(gemv)( |
| 't', |
| k_, m_, |
| scale, |
| THTensor_(data)(gradOutput_n), k_, |
| THTensor_(data)(ones), 1, |
| 1, |
| THTensor_(data)(gradBias), 1 |
| ); |
| } |
| } |
| |
| // Free |
| THTensor_(free)(input_n); |
| THTensor_(free)(gradOutput_n); |
| |
| // Resize |
| if (batch == 0) { |
| THTensor_(resize3d)(gradOutput, nOutputPlane, outputHeight, outputWidth); |
| THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth); |
| } |
| |
| THTensor_(free)(input); |
| THTensor_(free)(gradOutput); |
| } |
| |
| #endif |