blob: 11fdf6d5803cfde285fdf4005b5bb5f4aee13418 [file] [log] [blame]
TorchDynamo Deeper Dive
=======================
**Author**: `Jason Ansel <https://github.com/jansel>`_
What is a guard?
----------------
TorchDynamo operates just-in-time and specializes graphs based on
dynamic properties. For example, the first graph above has the following
guards:
::
GUARDS:
- local 'a' TENSOR_MATCH
- local 'b' TENSOR_MATCH
- global 'torch' FUNCTION_MATCH
If any of those guards fail, the graph will be recaptured and
recompiled. The interesting guard type there is ``TENSOR_MATCH``, which
checks the following ``torch.Tensor`` properties:
- Python class of the tensor (tensor subclassing, etc)
- dtype
- device
- requires_grad
- dispatch_key (with thread-local includes/excludes applied)
- ndim
- sizes\* (optional)
- strides\* (optional)
For sizes/strides you can disable this specialization by setting the
following parameter:
.. code-block:: python
torch._dynamo.config.dynamic_shapes = True
The full specialization mode allows the backend compiler to assume an
entirely static graph. Unfortunately, most backends require this.
Operators which return dynamic shapes will trigger a graph break when
not in dynamic shape mode.
What is Dynamo doing?
---------------------
If you want to understand better what TorchDynamo is doing, you can set:
.. code-block:: python
import torch._dynamo.config
import logging
torch._dynamo.config.log_level = logging.INFO
torch._dynamo.config.output_code = True
This code triggers useful (but spammy) printouts.
For example, the printouts for the first graph in the ``toy_example``
are:
::
__compiled_fn_0 <eval_with_key>.1
opcode name target args kwargs
------------- ------- ------------------------------------------------------ ---------------- --------
placeholder a a () {}
placeholder b b () {}
call_function abs_1 <built-in method abs of type object at 0x7f9ca082f8a0> (a,) {}
call_function add <built-in function add> (abs_1, 1) {}
call_function truediv <built-in function truediv> (a, add) {}
call_method sum_1 sum (b,) {}
call_function lt <built-in function lt> (sum_1, 0) {}
output output output ((truediv, lt),) {}
ORIGINAL BYTECODE toy_example example.py 9
10 0 LOAD_FAST 0 (a)
2 LOAD_GLOBAL 0 (torch)
4 LOAD_METHOD 1 (abs)
6 LOAD_FAST 0 (a)
8 CALL_METHOD 1
10 LOAD_CONST 1 (1)
12 BINARY_ADD
14 BINARY_TRUE_DIVIDE
16 STORE_FAST 2 (x)
11 18 LOAD_FAST 1 (b)
20 LOAD_METHOD 2 (sum)
22 CALL_METHOD 0
24 LOAD_CONST 2 (0)
26 COMPARE_OP 0 (<)
28 POP_JUMP_IF_FALSE 38
12 30 LOAD_FAST 1 (b)
32 LOAD_CONST 3 (-1)
34 BINARY_MULTIPLY
36 STORE_FAST 1 (b)
13 >> 38 LOAD_FAST 2 (x)
40 LOAD_FAST 1 (b)
42 BINARY_MULTIPLY
44 RETURN_VALUE
MODIFIED BYTECODE
9 0 LOAD_GLOBAL 3 (__compiled_fn_0)
2 LOAD_FAST 0 (a)
4 LOAD_FAST 1 (b)
6 CALL_FUNCTION 2
8 UNPACK_SEQUENCE 2
10 STORE_FAST 2 (x)
12 POP_JUMP_IF_FALSE 24
14 LOAD_GLOBAL 4 (__resume_at_30_1)
16 LOAD_FAST 1 (b)
18 LOAD_FAST 2 (x)
20 CALL_FUNCTION 2
22 RETURN_VALUE
>> 24 LOAD_GLOBAL 5 (__resume_at_38_2)
26 LOAD_FAST 1 (b)
28 LOAD_FAST 2 (x)
30 CALL_FUNCTION 2
32 RETURN_VALUE
GUARDS:
- local 'a' TENSOR_MATCH
- local 'b' TENSOR_MATCH
- global 'torch' FUNCTION_MATCH
At the top you can see the FX graph.
Next, you see the original bytecode of the function, followed by the
modified bytecode generated by TorchDynamo. Finally, you see the guards
which we covered above.
In the modified bytecode, ``__compiled_fn_0`` is the return value of
``my_compiler()`` (the compiled graph). ``__resume_at_30_1`` and
``__resume_at_38_2`` are both generated continuation functions that pick
up execution after a graph break (at bytecode offsets 30 and 38). Each
of these functions take the form:
::
__resume_at_<offset>:
... restore stack state if needed ...
JUMP_ABSOLUTE <offset> into toy_example
... original bytecode of toy_example ...
By generating this `resume_at` function, we force the remainder of the
function to be executed in a new Python frame which recursively
triggers TorchDynamo to restart its capture once execution reaches that
point for the first time.