| #include "caffe2/operators/atan_op.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 |  | 
 | #include "caffe2/core/context_gpu.h" | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | namespace { | 
 |  | 
 | template <typename T> | 
 | __global__ void | 
 | AtanGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { | 
 |   CUDA_1D_KERNEL_LOOP(i, N) { | 
 | #if __CUDA_ARCH__ >= 350 | 
 |     dX[i] = __ldg(dY + i) / (T(1) + __ldg(X + i) * __ldg(X + i)); | 
 | #else | 
 |     dX[i] = dY[i] / (T(1) + X[i] * X[i]); | 
 | #endif | 
 |   } | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | template <> | 
 | template <typename T> | 
 | bool AtanGradientFunctor<CUDAContext>::Forward( | 
 |     const std::vector<int>& X_dims, | 
 |     const std::vector<int>& /* dY_dims */, | 
 |     const T* X, | 
 |     const T* dY, | 
 |     T* dX, | 
 |     CUDAContext* context) const { | 
 |   const int size = std::accumulate( | 
 |       X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); | 
 |   AtanGradientCUDAKernel<T> | 
 |       <<<CAFFE_GET_BLOCKS(size), | 
 |          CAFFE_CUDA_NUM_THREADS, | 
 |          0, | 
 |          context->cuda_stream()>>>(size, dY, X, dX); | 
 |   C10_CUDA_KERNEL_LAUNCH_CHECK(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | REGISTER_CUDA_OPERATOR( | 
 |     Atan, | 
 |     UnaryElementwiseOp< | 
 |         TensorTypes<float>, | 
 |         CUDAContext, | 
 |         AtanFunctor<CUDAContext>>); | 
 | REGISTER_CUDA_OPERATOR( | 
 |     AtanGradient, | 
 |     BinaryElementwiseOp< | 
 |         TensorTypes<float>, | 
 |         CUDAContext, | 
 |         AtanGradientFunctor<CUDAContext>>); | 
 |  | 
 | } // namespace caffe2 |