| # Owner(s): ["module: dynamo"] |
| import math |
| import random |
| import unittest |
| |
| import numpy as np |
| import torch |
| import torch._dynamo.test_case |
| import torch._dynamo.testing |
| import torch.nn.functional as F |
| |
| from torch._dynamo.comptime import comptime |
| from torch._dynamo.testing import same |
| |
| |
| # The intention of this test file is you should put test cases specifically |
| # for assume_static_by_default=False, aka you want to YOLO make everything as |
| # dynamic as possible. If you want to test the more normal situation where |
| # you assume static by default, put it in a regular test file and |
| # test_dynamic_shapes will cover both the YOLO and non-YOLO cases. |
| |
| |
| @torch._dynamo.config.patch(assume_static_by_default=False) |
| class UnspecTests(torch._dynamo.test_case.TestCase): |
| def test_numpy_correctness(self): |
| def fn(x, y, z): |
| xy = [x + y, y, False] |
| np_x = x.numpy() |
| np_y = y.numpy() |
| return { |
| "x": x, |
| "z": z, |
| "a": np_y.sum(), |
| "b": xy, |
| "c": np_y[0][0] / 68, |
| "d": np_x.sum(), |
| "e": np_x + np_y, |
| }, x + np_y.sum() + z |
| |
| x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64) |
| y = torch.ones([2, 2], dtype=torch.int64) |
| z = np.int64(12) |
| res1 = fn(x, y, z) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| res2 = opt_fn(x, y, z) |
| self.assertTrue(same(res1, res2)) |
| |
| def test_no_recompilations(self): |
| # no recompilations if passing on different numpy int values |
| def fn(x, y): |
| return {"a": x + 1, "b": y / 2} |
| |
| x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| for i in range(10): |
| opt_fn(x, np.int64(i)) |
| self.assertEqual(cnts.frame_count, 1) |
| self.assertEqual(cnts.op_count, 2) |
| |
| def test_builtin_max_min(self): |
| # test unspecialized primitive max/min |
| def fn(x, y, z): |
| return z + 1, max(x, y), min(x - 4, y) |
| |
| x = np.int64(12) |
| y = 10 |
| z = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64) |
| res1 = fn(x, y, z) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| res2 = opt_fn(x, y, z) |
| self.assertTrue(same(res1, res2, relax_numpy_equality=True)) |
| |
| def test_feed_random_values_into_graph_only(self): |
| def fn(shape): |
| torch.manual_seed(123) |
| x = torch.randn(shape, device="cpu") * random.randint(30, 100) |
| return x |
| |
| shape = [2, 3] |
| random.seed(1) |
| res1 = fn(shape) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| random.seed(1) |
| res2 = opt_fn(shape) |
| |
| self.assertTrue(same(res1, res2)) |
| |
| def test_random_values_with_graph_break(self): |
| def fn(x): |
| r1 = random.random() |
| y = x + random.uniform(10, 20) |
| y.sum().item() |
| r2 = random.randint(2, 18) # no graph output in this frame |
| y.sum().item() |
| return y + r1, r2 |
| |
| x = torch.tensor([[1.0, 2.0], [3.0, 4.0]]) |
| random.seed(1) |
| res1 = fn(x) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| random.seed(1) |
| res2 = opt_fn(x) |
| self.assertTrue(same(res1, res2)) |
| |
| # Really annoying intersection of specialization and RandomValueSource |
| # If we get a RandomValueSource with a single element tensor, we should return a ConstantVariable like other |
| # unspects... but if we do, we break the bytecode assumptions and guards will not work as we will be reffering |
| # to a name from a source that is not there. If we call .item() and take the wrapped_value out, where we do |
| # wrapped_value = wrapped_value.item() where we send unspec down to wrap_fx_proxy, this test passes and then |
| # some models fail on missing codegen.tx.output.random_values_var. If we let the tensor value go into wrap as |
| # it is, this test fails. |
| # The real solution here is to rewrite RandomValueSource and all the codegen it does from the ground up. |
| def test_multiple_consecutive_random_calls_before_graph(self): |
| def fn(x): |
| dim1 = random.randrange(start=0, stop=5) |
| dim2 = random.randrange(start=0, stop=5) |
| dim3 = random.randrange(start=0, stop=5) |
| y = torch.rand(dim1, dim2, dim3) |
| return x + 2, y |
| |
| x = torch.tensor([[1.0, 2.0], [3.0, 4.0]]) |
| random.seed(1) |
| res1 = fn(x) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| random.seed(1) |
| res2 = opt_fn(x) |
| self.assertTrue(same(res1, res2)) |
| |
| def test_compiled_random_calls_are_random(self): |
| # For compiled functions with random calls, |
| # it should return different values for every iteration. |
| # https://github.com/pytorch/pytorch/issues/95425 |
| @torch.compile(backend="eager", fullgraph=True) |
| def fn(x): |
| return (x + 1) * random.uniform(0, 1) |
| |
| res = [] |
| for _ in range(5): |
| res.append(fn(torch.ones(2))) |
| for i in range(1, 5): |
| self.assertFalse(same(res[i - 1], res[i])) |
| |
| def test_random_call_with_while_loop(self): |
| def fn(x): |
| dim1 = random.randrange(start=0, stop=3) |
| dim2 = dim1 |
| while dim1 == dim2: |
| dim2 = random.randrange(start=0, stop=3) |
| return x * 2 |
| |
| x = torch.randn(4) |
| random.seed(1) |
| res1 = fn(x) |
| opt_fn = torch._dynamo.optimize("eager")(fn) |
| random.seed(1) |
| res2 = opt_fn(x) |
| self.assertTrue(same(res1, res2)) |
| |
| def test_builtin_getitem(self): |
| # builtin getitem args[0] is python list and args[1] is unspec |
| def fn(x, idx): |
| return (torch.zeros(idx), x[idx], x[idx:]) |
| |
| x = list(range(50)) |
| ref = fn(x, 48) # 48 is unspecialized |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| res = opt_fn(x, 48) |
| self.assertTrue(same(ref, res)) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "requires cuda") |
| def test_builtin_functions_on_cuda(self): |
| def fn(x, scaler): |
| m = torch.nn.ReLU() |
| y = m(x) * scaler |
| return y |
| |
| x = torch.randn([3, 6], device="cuda") |
| scaler = 0.23 # 0.23 is unspecialized |
| ref = fn(x, scaler) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| res = opt_fn(x, scaler) |
| self.assertTrue(same(ref, res)) |
| self.assertEqual(ref.device, res.device) |
| |
| def test_unspec_float_precision(self): |
| def fn(image, scale_factor): |
| image = torch.nn.functional.interpolate( |
| image[None], |
| size=None, |
| scale_factor=scale_factor, |
| mode="bilinear", |
| recompute_scale_factor=True, |
| align_corners=False, |
| )[0] |
| |
| return image.shape |
| |
| x = torch.rand([3, 427, 640]) |
| scale_factor = 1.873536229133606 |
| ref = fn(x, scale_factor) |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_fn = torch._dynamo.optimize(cnts)(fn) |
| res = opt_fn(x, scale_factor) |
| self.assertTrue(same(ref, res)) |
| |
| def test_specializing_numpy_float_in_control_flow(self): |
| # np.float is unspecialized by default, |
| # but it should be specialized when used in control flow. |
| def fn(x, y): |
| if y > 1.0: |
| return x + 1 |
| else: |
| return x - 1 |
| |
| x = torch.rand(4) |
| opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn) |
| for t in [np.float16, np.float32, np.float64]: |
| y = t(1.23) |
| ref = fn(x, y) |
| res = opt_fn(x, y) |
| self.assertTrue(same(ref, res)) |
| |
| def test_shape_graph_break(self): |
| from torch._dynamo.comptime import comptime |
| |
| def fn(x): |
| x_shape = x.size() |
| comptime.graph_break() |
| return x + torch.randn(x_shape) |
| |
| x = torch.randn(20) |
| opt_fn = torch._dynamo.optimize("eager")(fn) |
| opt_fn(x) |
| |
| def test_isinstance_symint(self): |
| def fn(x): |
| assert isinstance(x.size(0), int) |
| return x * 2 |
| |
| x = torch.randn(20) |
| opt_fn = torch._dynamo.optimize("eager")(fn) |
| opt_fn(x) |
| y = torch.randn(30) |
| torch._dynamo.mark_dynamic(y, 0) |
| opt_fn(y) |
| |
| def test_mark_01_dynamic(self): |
| def fn(x): |
| return x * 2 |
| |
| x = torch.randn(1) |
| torch._dynamo.mark_dynamic(x, 0) |
| opt_fn = torch._dynamo.optimize("eager")(fn) |
| # This will fail to compile a generic kernel, but we should not |
| # complain about it (mark dynamic will try its best but 0/1 |
| # specialization is allowed) |
| opt_fn(x) |
| |
| @unittest.expectedFailure |
| def test_conv1d_symint_padding(self): |
| kernel = torch.randn(1, 1, 4) |
| |
| def func(x): |
| padding = math.ceil((kernel.shape[-1] + x.shape[-1] % 2) / 2) - 1 |
| out = F.conv1d(x, kernel, padding=padding, stride=2) |
| return out |
| |
| # TODO: NameError: name 's1' is not defined when dynamic=True |
| opt_func = torch.compile(func) |
| |
| x = torch.randn(1, 1, 175) |
| opt_func(x) # passes |
| x = torch.randn(1, 1, 249) |
| opt_func(x) # crashes |
| |
| @torch._dynamo.config.patch("assume_static_by_default", True) |
| def test_propagate_dynamic_dim(self): |
| x = torch.randn(20) |
| torch._dynamo.mark_dynamic(x, 0) |
| |
| @torch.compile() |
| def fn(x): |
| y = x * 2 |
| comptime.graph_break() |
| z = y * 2 |
| return z |
| |
| z = fn(x) |
| self.assertEqual(z._dynamo_weak_dynamic_indices, {0}) |
| |
| def test_rshift_dynamic(self): |
| def shift_right(tensor: torch.Tensor) -> torch.Tensor: |
| return (tensor >> 2).to(torch.long) |
| |
| opt_fn = torch.compile(shift_right, fullgraph=True, dynamic=True) |
| sample_input = torch.tensor([4, 4, 16, 32], dtype=torch.uint8) |
| opt_fn(sample_input) |
| |
| |
| if __name__ == "__main__": |
| from torch._dynamo.test_case import run_tests |
| |
| run_tests() |