| # Owner(s): ["module: dynamo"] |
| import atexit |
| import contextlib |
| import functools |
| import logging |
| import os |
| import unittest.mock |
| |
| import torch |
| import torch._dynamo.test_case |
| import torch._dynamo.testing |
| import torch.distributed as dist |
| |
| from torch.nn.parallel import DistributedDataParallel as DDP |
| from torch.testing._internal.common_utils import find_free_port |
| from torch.testing._internal.inductor_utils import HAS_CUDA |
| from torch.testing._internal.logging_utils import ( |
| LoggingTestCase, |
| make_logging_test, |
| make_settings_test, |
| ) |
| |
| requires_cuda = functools.partial(unittest.skipIf, not HAS_CUDA, "requires cuda") |
| requires_distributed = functools.partial( |
| unittest.skipIf, not dist.is_available(), "requires distributed" |
| ) |
| |
| |
| def example_fn(a): |
| output = a.mul(torch.ones(1000, 1000)) |
| output = output.add(torch.ones(1000, 1000)) |
| return output |
| |
| |
| def dynamo_error_fn(a): |
| output = a.mul(torch.ones(1000, 1000)) |
| output = output.add(torch.ones(10, 10)) |
| return output |
| |
| |
| def inductor_error_fn(a): |
| output = torch.round(a) |
| return output |
| |
| |
| def inductor_schedule_fn(a): |
| output = a.add(torch.ones(1000, 1000, device="cuda")) |
| return output |
| |
| |
| ARGS = (torch.ones(1000, 1000, requires_grad=True),) |
| |
| |
| def multi_record_test(num_records, **kwargs): |
| @make_logging_test(**kwargs) |
| def fn(self, records): |
| fn_opt = torch._dynamo.optimize("inductor")(example_fn) |
| fn_opt(*ARGS) |
| self.assertEqual(len(records), num_records) |
| |
| return fn |
| |
| |
| def within_range_record_test(num_records_lower, num_records_higher, **kwargs): |
| @make_logging_test(**kwargs) |
| def fn(self, records): |
| fn_opt = torch._dynamo.optimize("inductor")(example_fn) |
| fn_opt(*ARGS) |
| self.assertGreaterEqual(len(records), num_records_lower) |
| self.assertLessEqual(len(records), num_records_higher) |
| |
| return fn |
| |
| |
| def single_record_test(**kwargs): |
| return multi_record_test(1, **kwargs) |
| |
| |
| class LoggingTests(LoggingTestCase): |
| test_bytecode = multi_record_test(2, bytecode=True) |
| test_output_code = multi_record_test(2, output_code=True) |
| test_aot_graphs = multi_record_test(2, aot_graphs=True) |
| |
| @requires_cuda() |
| @make_logging_test(schedule=True) |
| def test_schedule(self, records): |
| fn_opt = torch._dynamo.optimize("inductor")(inductor_schedule_fn) |
| fn_opt(torch.ones(1000, 1000, device="cuda")) |
| self.assertGreater(len(records), 0) |
| self.assertLess(len(records), 5) |
| |
| @make_logging_test(recompiles=True) |
| def test_recompiles(self, records): |
| def fn(x, y): |
| return torch.add(x, y) |
| |
| fn_opt = torch._dynamo.optimize("inductor")(fn) |
| fn_opt(torch.ones(1000, 1000), torch.ones(1000, 1000)) |
| fn_opt(torch.ones(1000, 1000), 1) |
| self.assertGreater(len(records), 0) |
| |
| test_dynamo_debug = within_range_record_test(30, 50, dynamo=logging.DEBUG) |
| test_dynamo_info = within_range_record_test(2, 10, dynamo=logging.INFO) |
| |
| @make_logging_test(dynamo=logging.DEBUG) |
| def test_dynamo_debug_no_bytecode(self, records): |
| fn_opt = torch._dynamo.optimize("inductor")(example_fn) |
| fn_opt(torch.ones(1000, 1000)) |
| self.assertEqual(len([r for r in records if ".__bytecode" in r.name]), 0) |
| |
| @make_logging_test(dynamo=logging.ERROR) |
| def test_dynamo_error(self, records): |
| try: |
| fn_opt = torch._dynamo.optimize("inductor")(dynamo_error_fn) |
| fn_opt(*ARGS) |
| except Exception: |
| pass |
| self.assertEqual(len(records), 1) |
| |
| test_aot = within_range_record_test(2, 6, aot=logging.INFO) |
| test_inductor_debug = within_range_record_test(3, 15, inductor=logging.DEBUG) |
| test_inductor_info = within_range_record_test(2, 4, inductor=logging.INFO) |
| |
| @make_logging_test(dynamo=logging.ERROR) |
| def test_inductor_error(self, records): |
| exitstack = contextlib.ExitStack() |
| import torch._inductor.lowering |
| |
| def throw(x): |
| raise AssertionError() |
| |
| # inject an error in the lowerings |
| dict_entries = {} |
| for x in list(torch._inductor.lowering.lowerings.keys()): |
| if "round" in x.__name__: |
| dict_entries[x] = throw |
| |
| exitstack.enter_context( |
| unittest.mock.patch.dict(torch._inductor.lowering.lowerings, dict_entries) |
| ) |
| |
| try: |
| fn_opt = torch._dynamo.optimize("inductor")(inductor_error_fn) |
| fn_opt(*ARGS) |
| except Exception: |
| pass |
| self.assertEqual(len(records), 1) |
| self.assertIsInstance(records[0].msg, str) |
| |
| exitstack.close() |
| |
| @requires_distributed() |
| @requires_cuda() |
| @make_logging_test(ddp_graphs=True) |
| def test_ddp_graphs(self, records): |
| class ToyModel(torch.nn.Module): |
| def __init__(self): |
| super(ToyModel, self).__init__() |
| self.layers = torch.nn.Sequential( |
| torch.nn.Linear(1024, 1024), |
| torch.nn.Linear(1024, 1024), |
| ) |
| |
| def forward(self, x): |
| return self.layers(x) |
| |
| os.environ["MASTER_ADDR"] = "localhost" |
| os.environ["MASTER_PORT"] = str(find_free_port()) |
| dist.init_process_group("gloo", rank=0, world_size=1) |
| |
| ddp_model = torch._dynamo.optimize("inductor")( |
| DDP(ToyModel().to("cuda:0"), device_ids=[0], bucket_cap_mb=4) |
| ) |
| |
| ddp_model(torch.randn(1024, 1024, device="cuda:0")) |
| |
| dist.destroy_process_group() |
| self.assertEqual(len([r for r in records if "__ddp_graphs" in r.name]), 4) |
| |
| # check that logging to a child log of a registered logger |
| # does not register it and result in duplicated records |
| @make_settings_test("torch._dynamo.output_graph") |
| def test_open_registration_with_registered_parent(self, records): |
| logger = logging.getLogger("torch._dynamo.output_graph") |
| logger.info("hi") |
| self.assertEqual(len(records), 1) |
| |
| # check logging to a random log that is not a child log of a registered |
| # logger registers it and sets handlers properly |
| @make_settings_test("torch.utils") |
| def test_open_registration(self, records): |
| logger = logging.getLogger("torch.utils") |
| logger.info("hi") |
| self.assertEqual(len(records), 1) |
| |
| # check logging to a random log that is not a child log of a registered |
| # logger registers it and sets handlers properly |
| @make_logging_test(modules={"torch.utils": logging.INFO}) |
| def test_open_registration_python_api(self, records): |
| logger = logging.getLogger("torch.utils") |
| logger.info("hi") |
| self.assertEqual(len(records), 1) |
| |
| @make_logging_test(all=logging.DEBUG, dynamo=logging.INFO) |
| def test_all(self, _): |
| registry = torch._logging._internal.log_registry |
| |
| dynamo_qname = registry.log_alias_to_log_qname["dynamo"] |
| for logger_qname in torch._logging._internal.log_registry.get_log_qnames(): |
| logger = logging.getLogger(logger_qname) |
| |
| if logger_qname == dynamo_qname: |
| self.assertEqual(logger.level, logging.INFO) |
| else: |
| self.assertEqual(logger.level, logging.DEBUG) |
| |
| @make_logging_test(graph_breaks=True) |
| def test_graph_breaks(self, records): |
| @torch._dynamo.optimize("inductor") |
| def fn(x): |
| torch._dynamo.graph_break() |
| return x + 1 |
| |
| fn(torch.ones(1)) |
| |
| self.assertEqual(len(records), 1) |
| |
| @make_settings_test("torch._dynamo.utils") |
| def test_dump_compile_times(self, records): |
| fn_opt = torch._dynamo.optimize("inductor")(example_fn) |
| fn_opt(torch.ones(1000, 1000)) |
| # explicitly invoke the atexit registered functions |
| atexit._run_exitfuncs() |
| self.assertEqual( |
| len( |
| [r for r in records if "TorchDynamo compilation metrics" in str(r.msg)] |
| ), |
| 1, |
| ) |
| |
| @make_logging_test(dynamo=logging.INFO) |
| def test_custom_format(self, records): |
| dynamo_log = logging.getLogger(torch._dynamo.__name__) |
| test_log = torch._logging.getArtifactLogger( |
| torch._dynamo.__name__, "custom_format_test_artifact" |
| ) |
| dynamo_log.info("test dynamo") |
| test_log.info("custom format") |
| self.assertEqual(len(records), 2) |
| # unfortunately there's no easy way to test the final formatted log other than |
| # to ask the dynamo logger's handler to format it. |
| for handler in dynamo_log.handlers: |
| if torch._logging._internal._is_torch_handler(handler): |
| break |
| self.assertIsNotNone(handler) |
| self.assertIn("[INFO]", handler.format(records[0])) |
| self.assertEqual("custom format", handler.format(records[1])) |
| |
| |
| # single record tests |
| exclusions = { |
| "bytecode", |
| "output_code", |
| "schedule", |
| "aot_graphs", |
| "recompiles", |
| "graph_breaks", |
| "ddp_graphs", |
| "perf_hints", |
| "not_implemented", |
| "custom_format_test_artifact", |
| } |
| for name in torch._logging._internal.log_registry.artifact_names: |
| if name not in exclusions: |
| setattr(LoggingTests, f"test_{name}", single_record_test(**{name: True})) |
| |
| if __name__ == "__main__": |
| from torch._dynamo.test_case import run_tests |
| |
| run_tests() |