| # Owner(s): ["module: dynamo"] |
| |
| import inspect |
| import os |
| import tempfile |
| import unittest |
| |
| import torch |
| from torch._dynamo.testing import CompileCounter |
| |
| |
| class ToyModel(torch.nn.Module): |
| def __init__(self): |
| super(ToyModel, self).__init__() |
| self.linear = torch.nn.Linear(10, 10) |
| self.relu = torch.nn.ReLU() |
| |
| def forward(self, x): |
| return self.relu(self.linear(x)) |
| |
| |
| class InPlaceCompilationTests(unittest.TestCase): |
| def test_compilation(self): |
| torch._dynamo.reset() |
| model = ToyModel() |
| cnt = CompileCounter() |
| model.compile(backend=cnt) |
| x = torch.randn(10, 10) |
| model(x) |
| self.assertEqual(cnt.frame_count, 1) |
| |
| def test_overwrite_call_impl(self): |
| torch._dynamo.reset() |
| model = ToyModel() |
| self.assertTrue(model._compiled_call_impl is None) |
| model.compile() |
| self.assertTrue(model._compiled_call_impl is not None) |
| |
| def test_save(self): |
| torch._dynamo.reset() |
| model = ToyModel() |
| model.compile() |
| model(torch.randn(1, 10)) |
| |
| with tempfile.TemporaryDirectory() as tmpdirname: |
| torch.save(model, os.path.join(tmpdirname, "model.pt")) |
| loaded_model = torch.load(os.path.join(tmpdirname, "model.pt")) |
| loaded_model(torch.randn(1, 10)) |
| |
| def test_state_dict_save(self): |
| torch._dynamo.reset() |
| model = ToyModel() |
| model.compile() |
| model(torch.randn(1, 10)) |
| with tempfile.TemporaryDirectory() as tmpdirname: |
| torch.save(model.state_dict(), os.path.join(tmpdirname, "model.pt")) |
| loaded_model = ToyModel() |
| loaded_model.load_state_dict( |
| torch.load(os.path.join(tmpdirname, "model.pt")) |
| ) |
| loaded_model(torch.randn(1, 10)) |
| |
| def test_jit_save(self): |
| torch._dynamo.reset() |
| model = ToyModel() |
| model.compile() |
| model(torch.randn(1, 10)) |
| scripted_model = torch.jit.script(model) |
| with tempfile.TemporaryDirectory() as tmpdirname: |
| torch.jit.save(scripted_model, os.path.join(tmpdirname, "model.pt")) |
| loaded_model = torch.jit.load(os.path.join(tmpdirname, "model.pt")) |
| loaded_model(torch.randn(1, 10)) |
| |
| |
| # The private variants of the below functions are extensively tested |
| # So as long as the signatures match we're good |
| class PublicTorchCompilerTests(unittest.TestCase): |
| def check_signature(self, public_fn_name, private_fn_name, private_namespace): |
| public_fn = getattr(torch.compiler, public_fn_name) |
| private_fn = getattr(private_namespace, private_fn_name) |
| |
| public_sig = inspect.signature(public_fn) |
| private_sig = inspect.signature(private_fn) |
| |
| self.assertEqual( |
| public_sig, |
| private_sig, |
| f"Signatures do not match for function {public_fn_name}() \n Public: {public_sig} \n Private: {private_sig}", |
| ) |
| |
| def test_dynamo_signatures(self): |
| function_names = [ |
| "reset", |
| "allow_in_graph", |
| "list_backends", |
| "assume_constant_result", |
| "disable", |
| ] |
| |
| for fn_name in function_names: |
| self.check_signature(fn_name, fn_name, torch._dynamo) |