|  | import torch | 
|  | from .optimizer import Optimizer | 
|  |  | 
|  |  | 
|  | class RMSprop(Optimizer): | 
|  | r"""Implements RMSprop algorithm. | 
|  |  | 
|  | Proposed by G. Hinton in his | 
|  | `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_. | 
|  |  | 
|  | The centered version first appears in `Generating Sequences | 
|  | With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. | 
|  |  | 
|  | The implementation here takes the square root of the gradient average before | 
|  | adding epsilon (note that TensorFlow interchanges these two operations). The effective | 
|  | learning rate is thus :math:`\alpha/(\sqrt{v} + \epsilon)` where :math:`\alpha` | 
|  | is the scheduled learning rate and :math:`v` is the weighted moving average | 
|  | of the squared gradient. | 
|  |  | 
|  | Arguments: | 
|  | params (iterable): iterable of parameters to optimize or dicts defining | 
|  | parameter groups | 
|  | lr (float, optional): learning rate (default: 1e-2) | 
|  | momentum (float, optional): momentum factor (default: 0) | 
|  | alpha (float, optional): smoothing constant (default: 0.99) | 
|  | eps (float, optional): term added to the denominator to improve | 
|  | numerical stability (default: 1e-8) | 
|  | centered (bool, optional) : if ``True``, compute the centered RMSProp, | 
|  | the gradient is normalized by an estimation of its variance | 
|  | weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | 
|  |  | 
|  | """ | 
|  |  | 
|  | def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False): | 
|  | if not 0.0 <= lr: | 
|  | raise ValueError("Invalid learning rate: {}".format(lr)) | 
|  | if not 0.0 <= eps: | 
|  | raise ValueError("Invalid epsilon value: {}".format(eps)) | 
|  | if not 0.0 <= momentum: | 
|  | raise ValueError("Invalid momentum value: {}".format(momentum)) | 
|  | if not 0.0 <= weight_decay: | 
|  | raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | 
|  | if not 0.0 <= alpha: | 
|  | raise ValueError("Invalid alpha value: {}".format(alpha)) | 
|  |  | 
|  | defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay) | 
|  | super(RMSprop, self).__init__(params, defaults) | 
|  |  | 
|  | def __setstate__(self, state): | 
|  | super(RMSprop, self).__setstate__(state) | 
|  | for group in self.param_groups: | 
|  | group.setdefault('momentum', 0) | 
|  | group.setdefault('centered', False) | 
|  |  | 
|  | @torch.no_grad() | 
|  | def step(self, closure=None): | 
|  | """Performs a single optimization step. | 
|  |  | 
|  | Arguments: | 
|  | closure (callable, optional): A closure that reevaluates the model | 
|  | and returns the loss. | 
|  | """ | 
|  | loss = None | 
|  | if closure is not None: | 
|  | with torch.enable_grad(): | 
|  | loss = closure() | 
|  |  | 
|  | for group in self.param_groups: | 
|  | for p in group['params']: | 
|  | if p.grad is None: | 
|  | continue | 
|  | grad = p.grad | 
|  | if grad.is_sparse: | 
|  | raise RuntimeError('RMSprop does not support sparse gradients') | 
|  | state = self.state[p] | 
|  |  | 
|  | # State initialization | 
|  | if len(state) == 0: | 
|  | state['step'] = 0 | 
|  | state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | 
|  | if group['momentum'] > 0: | 
|  | state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format) | 
|  | if group['centered']: | 
|  | state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | 
|  |  | 
|  | square_avg = state['square_avg'] | 
|  | alpha = group['alpha'] | 
|  |  | 
|  | state['step'] += 1 | 
|  |  | 
|  | if group['weight_decay'] != 0: | 
|  | grad = grad.add(p, alpha=group['weight_decay']) | 
|  |  | 
|  | square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) | 
|  |  | 
|  | if group['centered']: | 
|  | grad_avg = state['grad_avg'] | 
|  | grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha) | 
|  | avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_().add_(group['eps']) | 
|  | else: | 
|  | avg = square_avg.sqrt().add_(group['eps']) | 
|  |  | 
|  | if group['momentum'] > 0: | 
|  | buf = state['momentum_buffer'] | 
|  | buf.mul_(group['momentum']).addcdiv_(grad, avg) | 
|  | p.add_(buf, alpha=-group['lr']) | 
|  | else: | 
|  | p.addcdiv_(grad, avg, value=-group['lr']) | 
|  |  | 
|  | return loss |